Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(20): 12957-12969, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720633

ABSTRACT

In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.


Subject(s)
Molecular Dynamics Simulation , Nanoparticles , Nanoparticles/chemistry , Lipids/chemistry , Anisotropy
2.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591683

ABSTRACT

The plasmonic coupling between silver (Ag) and gold (Au) nanoparticles (NPs) under four polarization modes was examined: a longitudinal mode (L-mode), where the electric field of a linearly polarized incident light parallels the dimer axis, and three transverse modes (T-modes), where the electric field of the light is perpendicular to the dimer axis. The coupling was studied using the discrete dipole approximation followed by an in-house postprocessing code that determines the extinction (Qext), absorption (Qabs), and near-field (Qnf) spectra from the individual NPs as well as the whole system. In agreement with the literature results, the extinction/absorption spectra of the whole dimer have two peaks, one near the Ag localized surface plasmon resonance (LSPR) region and the other at the Au LSPR region, with the peak at Ag LSPR being reduced in all modes and the peak at Au LSPR being red-shifted and increased in the L-mode but not in the T-modes. It is further shown that the scattering at the Ag LSPR region is reduced and becomes less than the isolated Ag NPs, but the absorption at the Ag LSPR is increased and becomes greater than the isolated Ag NPs for the 50 nm Ag-Au heterodimer. This suggests that the scattering from Ag NPs is being reabsorbed by the neighboring Au NPs due to the interband electronic transition in Au at that wavelength range. The Qext from the individual NP in the heterodimer shows the presence of the Fano profile on the Au NP but not on the Ag NP. This phenomenon was further investigated by using a dielectric particle (DP) placed near the Ag or Au NPs. The Fano profile appears in the absorbing DP spectra placed near either Ag or Au NPs. However, the Fano profile is masked upon further increases in the refractive index value of the DP particle. This explains the absence of a Fano profile on the Ag NPs in the Ag-Au heterodimer. The large near-field enhancement on both Ag and Au NPs at the Au plasmonic wavelength in the L-mode for large NPs was investigated through a DP-Au system. The large enhancement was shown to arise from a large imaginary component of the DP refractive index and a small real component. Through examination of both the near- and far-field properties of the individual NPs as well as the whole system and examinations of DP-Ag and DP-Au systems, our study provides a new understanding of the couplings between Ag and Au NPs.

3.
Opt Express ; 26(16): 20718-20725, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119377

ABSTRACT

Plasmonic structures can precisely localize electromagnetic energy to deep subwavelength regions resulting in significant field enhancement useful for efficient on-chip nonlinear generation. However, the origin of large nonlinear enhancements observed in plasmonic nanogap structures consisting of both dielectrics and metals is not fully understood. For the first time, here we probe the third harmonic generation (THG) from a variety of dielectric materials embedded in a nanogap plasmonic cavity. From comprehensive spectral analysis of the THG signal, we conclude that the nonlinear response results primarily from the dielectric spacer layer itself as opposed to the surrounding metal. We achieved a maximum enhancement factor of more than six orders of magnitude compared to a bare gold film, which represents a nonlinear conversion efficiency of 8.78 × 10-4%. We expect this new insight into the nonlinear response in ultrathin gaps between metals to be promising for on-chip nonlinear devices such as ultrafast optical switching and entangled photon sources.

4.
Nano Lett ; 17(11): 6690-6695, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28956442

ABSTRACT

Coherent light sources have been demonstrated based on a wide range of nanostructures, however, little effort has been devoted to probing their underlying coherence properties. Here, we report long-range spatial coherence of lattice plasmon lasers constructed from a periodic array of gold nanoparticles and a liquid gain medium at room temperature. By combining spatial and temporal interferometry, we demonstrate millimeter-scale (∼1 mm) spatial coherence and picosecond (∼2 ps) temporal coherence. The long-range spatial coherence occurs even without the presence of strong coupling with the lattice plasmon mode extending over macroscopic distances in the lasing regime. This plasmonic lasing system thus provides a platform for understanding the emergence of long-range coherence from collections of nanoscale resonators and points toward novel types of distributed lasing sources.

5.
J Vis Exp ; (111)2016 05 28.
Article in English | MEDLINE | ID: mdl-27285421

ABSTRACT

We present a method for colloidal synthesis of silver nanocubes and the use of these in combination with a smooth gold film, to fabricate plasmonic nanoscale patch antennas. This includes a detailed procedure for the fabrication of thin films with a well-controlled thickness over macroscopic areas using layer-by-layer deposition of polyelectrolyte polymers, namely poly(allylamine) hydrochloride (PAH) and polystyrene sulfonate (PSS). These polyelectrolyte spacer layers serve as a dielectric gap in between silver nanocubes and a gold film. By controlling the size of the nanocubes or the gap thickness, the plasmon resonance can be tuned from about 500 nm to 700 nm. Next, we demonstrate how to incorporate organic sulfo-cyanine5 carboxylic acid (Cy5) dye molecules into the dielectric polymer gap region of the nanopatch antennas. Finally, we show greatly enhanced fluorescence of the Cy5 dyes by spectrally matching the plasmon resonance with the excitation energy and the Cy5 absorption peak. The method presented here enables the fabrication of plasmonic nanopatch antennas with well-controlled dimensions utilizing colloidal synthesis and a layer-by-layer dip-coating process with the potential for low cost and large-scale production. These nanopatch antennas hold great promise for practical applications, for example in sensing, ultrafast optoelectronic devices and for high-efficiency photodetectors.


Subject(s)
Colloids/chemistry , Metal Nanoparticles/chemistry , Optics and Photonics/instrumentation , Allyl Compounds/chemistry , Amines/chemistry , Gold/chemistry , Nanotechnology/instrumentation , Nanotechnology/methods , Optics and Photonics/methods , Polyamines , Polystyrenes/chemistry , Silver/chemistry , Surface Plasmon Resonance
6.
Sci Rep ; 6: 22414, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26940069

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMDCs) have spurred excitement for potential applications in optoelectronic and valleytronic devices; however, the origin of the dynamics of excitons, trions, and other localized states in these low dimensional materials is not well-understood. Here, we experimentally probed the dynamics of excitonic states in monolayer WSe2 by investigating the temperature and polarization dependent photoluminescence (PL) spectra. Four pronounced PL peaks were identified below a temperature of 60 K at near-resonant excitation and assigned to exciton, trion and localized states from excitation power dependence measurements. We find that the localized states vanish above 65 K, while exciton and trion emission peaks remain up to room temperature. This can be explained by a multi-level model developed for conventional semiconductors and applied to monolayer TMDCs for the first time here. From this model, we estimated a lower bound of the exciton binding energy of 198 meV for monolayer WSe2 and explained the vanishing of the localized states. Additionally, we observed a rapid decrease in the degree of circular polarization of the PL at increasing temperatures indicating a relatively strong electron-phonon coupling and impurity-related scattering. Our results reveal further insight into the excitonic states in monolayer WSe2 which is critical for future practical applications.

7.
Nano Lett ; 16(1): 270-5, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26606001

ABSTRACT

Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

8.
Adv Mater ; 27(48): 8028-34, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26549512

ABSTRACT

An absorptive metasurface based on film-coupled colloidal silver nanocubes is demonstrated. The metasurfaces are fabricated using simple dip-coating methods and can be deposited over large areas and on arbitrarily shaped objects. The surfaces show nearly complete absorption, good off-angle performance, and the resonance can be tuned from the visible to the near-infrared.

9.
Nat Commun ; 6: 7788, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26212857

ABSTRACT

Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

10.
Nano Lett ; 15(5): 3578-84, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25914964

ABSTRACT

Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths--critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ∼60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. We observe a 2000-fold enhancement in the PL intensity of MoS2--which has intrinsically low absorption and small quantum yield--at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.

11.
Nat Commun ; 6: 6939, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25891212

ABSTRACT

Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, most plasmon-based nanolasers rely on solid gain materials (inorganic semiconducting nanowire or organic dye in a solid matrix) that preclude the possibility of dynamic tuning. Here we report an approach to achieve real-time, tunable lattice plasmon lasing based on arrays of gold nanoparticles and liquid gain materials. Optically pumped arrays of gold nanoparticles surrounded by liquid dye molecules exhibit lasing emission that can be tuned as a function of the dielectric environment. Wavelength-dependent time-resolved experiments show distinct lifetime characteristics below and above the lasing threshold. By integrating gold nanoparticle arrays within microfluidic channels and flowing in liquid gain materials with different refractive indices, we achieve dynamic tuning of the plasmon lasing wavelength. Tunable lattice plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time.

12.
Nat Nanotechnol ; 9(11): 886-90, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218324

ABSTRACT

The radiative interaction of solid-state emitters with cavity fields is the basis of semiconductor microcavity lasers and cavity quantum electrodynamics (CQED) systems. Its control in real time would open new avenues for the generation of non-classical light states, the control of entanglement and the modulation of lasers. However, unlike atomic CQED or circuit quantum electrodynamics, the real-time control of radiative processes has not yet been achieved in semiconductors because of the ultrafast timescales involved. Here we propose an ultrafast non-local moulding of the vacuum field in a coupled-cavity system as an approach to the control of radiative processes and demonstrate the dynamic control of the spontaneous emission (SE) of quantum dots (QDs) in a photonic crystal (PhC) cavity on a ∼ 200 ps timescale, much faster than their natural SE lifetimes.

13.
Nano Lett ; 14(8): 4797-802, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25020029

ABSTRACT

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

14.
Opt Express ; 20(19): 21758-65, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037295

ABSTRACT

We demonstrate tunable on-chip single photon sources using the Stark tuning of single quantum dot (QD) excitonic transitions in short photonic crystal waveguides (PhC WGs). The emission of single QDs can be tuned in real-time by 9 nm with an applied bias voltage less than 2V. Due to a reshaped density of optical modes in the PhC WG, a large coupling efficiency ß ≥ 65%to the waveguide mode is maintained across a wavelength range of 5 nm. When the QD is resonant with the Fabry-Perot mode of the PhC WG, a strong enhancement of spontaneous emission is observed leading to a maximum coupling efficiency ß = 88%. These results represent an important step towards the scalable integration of single photon sources in quantum photonic integrated circuits.

15.
Nano Lett ; 8(12): 4459-63, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367852

ABSTRACT

We have demonstrated the growth of a unique wurtzite (WZ) GaAs nanowire (NW) with a zinc blende (ZB) GaAsSb insert by Au-assisted molecular beam epitaxy. An abrupt interface from the WZ GaAs phase to the ZB GaAsSb phase was observed, whereas an intermediate segment of a 4H polytype GaAs phase was found directly above the ZB GaAsSb insert. A possible mechanism for the different phase transitions is discussed. Furthermore, low temperature microphotoluminescence (micro-PL) measurements showed evidence of quantum confinement of holes in the GaAsSb insert.

SELECTION OF CITATIONS
SEARCH DETAIL
...