Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Am Chem Soc ; 132(13): 4966-70, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20225872

ABSTRACT

The second-order nonlinear optical (NLO) properties of [Ln(hfac)(3)(diglyme)] (hfac = hexafluoroacetylacetonate; diglyme = bis(2-methoxyethyl)ether; Ln = La, Ce, Pr, Sm, Eu, Gd, Er, Lu) complexes have been investigated by a combination of electric-field second harmonic generation (EFISH) and harmonic light scattering (HLS) techniques, providing evidence for the relevant role of f electrons in tuning the second-order NLO response dominated by the octupolar contribution. These lanthanide NLO chromophores allow a clean valuation of the influence of f electrons on the quadratic hyperpolarizability and on its dipolar and octupolar contributions. Molecular quadratic hyperpolarizability values measured by the EFISH method, beta(EFISH), initially increase rapidly with the number of f electrons, the value for the Gd complex being 11 times that of the La complex, whereas this increase is much lower for the last seven f electrons, the beta(EFISH) value of the Lu complex being only 1.2 times that of the Gd complex. The increase of beta(HLS), which is dominated by an octupolar contribution, is much lower along the Ln series. Remarkably, the good beta(HLS) values of these simple systems, well known for their luminescence properties, are reached at no cost of transparency.


Subject(s)
Ethylene Glycols/chemistry , Ketones/chemistry , Lanthanoid Series Elements/chemistry , Methyl Ethers/chemistry , Organometallic Compounds/chemistry , Electrochemistry , Models, Molecular , Optics and Photonics , Organometallic Compounds/chemical synthesis
2.
Inorg Chem ; 48(17): 8120-33, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19642646

ABSTRACT

The synthesis, linear optical and nonlinear optical properties, as well as the electrochemical behavior of a series of pro-ligands containing the 4-(4-N,N-dimethylaminostyryl)-1-methyl pyridinium (DASP(+)) group as a push-pull moiety covalently linked to terpyridine or bipyridine as chelating ligands are reported in this full paper. The corresponding multifunctional Ru(II) and Zn(II) complexes were prepared and investigated. The structural, electronic, and optical properties of the pro-ligands and the ruthenium complexes were investigated using density functional theory (DFT) and time-dependent (TD) DFT calculations. A fairly good agreement was observed between the experimental and the calculated electronic spectra of the pro-ligands and their corresponding ruthenium complexes. A quenching of luminescence was evidenced in all ruthenium complexes compared with the free pro-ligands but even the terpyridine-functionalized metal complexes exhibited detectable luminescence at room temperature. Second order nonlinear optical (NLO) measurements were performed by Harmonic Light Scattering and the contribution of the DASP(+) moieties (and their relative ordering) and the metal-polypyridyl core need to be considered to explain the nonlinear optical properties of the metal complexes.


Subject(s)
Computer Simulation , Organometallic Compounds/chemistry , Pyridines/chemistry , Pyridinium Compounds/chemistry , Ruthenium/chemistry , Zinc/chemistry , Electrochemistry , Ligands , Models, Chemical , Molecular Structure , Optics and Photonics , Organometallic Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...