Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 216(Pt 2): 114537, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36273599

ABSTRACT

Human health is linked to climatic factors in complex ways, and climate change can have profound direct and indirect impacts on the health status of any given region. Susceptibility to climate change is modulated by biological, ecological and socio-political factors such as age, gender, geographic location, socio-economic status, occupation, health status and housing conditions, among other. In the Eastern Mediterranean and Middle East (EMME), climatic factors known to affect human health include extreme heat, water shortages and air pollution. Furthermore, the epidemiology of vector-borne diseases (VBDs) and the health consequences of population displacement are also influenced by climate change in this region. To inform future policies for adaptation and mitigation measures, and based on an extensive review of the available knowledge, we recommend several research priorities for the region. These include the generation of more empirical evidence on exposure-response functions involving climate change and specific health outcomes, the development of appropriate methodologies to evaluate the physical and psychological effects of climate change on vulnerable populations, determining how climate change alters the ecological determinants of human health, improving our understanding of the effects of long-term exposure to heat stress and air pollution, and evaluating the interactions between adaptation and mitigation strategies. Because national boundaries do not limit most climate-related factors expected to impact human health, we propose that adaptation/mitigation policies must have a regional scope, and therefore require collaborative efforts among EMME nations. Policy suggestions include a decisive region-wide decarbonisation, the integration of environmentally driven morbidity and mortality data throughout the region, advancing the development and widespread use of affordable technologies for the production and management of drinking water by non-traditional means, the development of comprehensive strategies to improve the health status of displaced populations, and fostering regional networks for monitoring and controlling the spread of infectious diseases and disease vectors.


Subject(s)
Air Pollution , Communicable Diseases , Humans , Climate Change , Communicable Diseases/epidemiology , Policy , Research
4.
Evolution ; 70(1): 126-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26593965

ABSTRACT

Transitions between animal and wind pollination have occurred in many lineages and have been linked to various floral modifications, but these have seldom been assessed in a phylogenetic framework. In the dioecious genus Leucadendron (Proteaceae), transitions from insect to wind pollination have occurred at least four times. Using analyses that controlled for relatedness among Leucadendron species, we investigated how these transitions shaped the evolution of floral structural and signaling traits, including the degree of sexual dimorphism in these traits. Pollen grains of wind-pollinated species were found to be smaller, more numerous, and dispersed more efficiently in wind than were those of insect-pollinated species. Wind-pollinated species also exhibited a reduction in spectral contrast between showy subtending leaves and background foliage, reduced volatile emissions, and a greater degree of sexual dimorphism in color and scent. Uniovulate flowers and inflorescence condensation are conserved ancestral features in Leucadendron and likely served as exaptations in shifts to wind pollination. These results offer insights into the key modifications of male and female floral traits involved in transitions between insect and wind pollination.


Subject(s)
Biological Evolution , Pollination , Proteaceae/physiology , Animals , Flowers/growth & development , Insecta/physiology , Phenotype , Phylogeny , Proteaceae/growth & development , Wind
5.
Ann Bot ; 112(7): 1303-19, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23997231

ABSTRACT

BACKGROUND AND AIMS: The Orchidaceae have a history of recurring convergent evolution in floral function as nectar production has evolved repeatedly from an ancestral nectarless state. However, orchids exhibit considerable diversity in nectary type, position and morphology, indicating that this convergence arose from alternative adaptive solutions. Using the genus Disa, this study asks whether repeated evolution of floral nectaries involved recapitulation of the same nectary type or diversifying innovation. Epidermis morphology of closely related nectar-producing and nectarless species is also compared in order to identify histological changes that accompanied the gain or loss of nectar production. METHODS: The micromorphology of nectaries and positionally equivalent tissues in nectarless species was examined with light and scanning electron microscopy. This information was subjected to phylogenetic analyses to reconstruct nectary evolution and compare characteristics of nectar-producing and nectarless species. KEY RESULTS: Two nectary types evolved in Disa. Nectar exudation by modified stomata in floral spurs evolved twice, whereas exudation by a secretory epidermis evolved six times in different perianth segments. The spur epidermis of nectarless species exhibited considerable micromorphological variation, including strongly textured surfaces and non-secreting stomata in some species. Epidermis morphology of nectar-producing species did not differ consistently from that of rewardless species at the magnifications used in this study, suggesting that transitions from rewardlessness to nectar production are not necessarily accompanied by visible morphological changes but only require sub-cellular modification. CONCLUSIONS: Independent nectary evolution in Disa involved both repeated recapitulation of secretory epidermis, which is present in the sister genus Brownleea, and innovation of stomatal nectaries. These contrasting nectary types and positional diversity within types imply weak genetic, developmental or physiological constraints in ancestral, nectarless Disa. Such functional convergence generated by morphologically diverse solutions probably also underlies the extensive diversity of nectary types and positions in the Orchidaceae.


Subject(s)
Biodiversity , Biological Evolution , Flowers/physiology , Orchidaceae/physiology , Plant Nectar/physiology , Flowers/ultrastructure , Orchidaceae/ultrastructure , Phylogeny , Plant Stomata/physiology , Plant Stomata/ultrastructure
6.
Biol Lett ; 9(5): 20130500, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-23904568

ABSTRACT

An outstanding feature of the orchid family is that approximately 30-40% of the species have non-rewarding flowers and deploy various modes of deception to attract pollinators, whereas the remaining species engage in pollination mutualisms based on provision of floral rewards. Here, we explore the direction, frequency and reversibility of transitions between deceptive and rewarding pollination systems in the radiation of the large African genus Disa, and test whether these transitions had consequences for diversification. By optimizing nectar production data for 111 species on a well-resolved phylogeny, we confirmed that floral deception was the ancestral condition and that nectar production evolved at least nine times and was lost at least once. Transitions to nectar production first occurred ca 17 million years ago but did not significantly affect either speciation or extinction rates. Nectar evolved independently of a spur, which was lost and gained multiple times. These results show that nectar production can be a highly labile trait and highlight the need for further studies of the genetic architecture of nectar production and the selective factors underlying transitions between deception and mutualism.


Subject(s)
Biological Evolution , Orchidaceae/metabolism , Plant Nectar/metabolism , Orchidaceae/classification , Orchidaceae/genetics , Phylogeny
7.
Evolution ; 66(5): 1375-86, 2012 May.
Article in English | MEDLINE | ID: mdl-22519778

ABSTRACT

Inbreeding depression can reduce the performance of offspring produced by mating between relatives, with consequences for population dynamics and sexual-system evolution. In flowering plants, inbreeding depression commonly acts most intensely during seed development. This predispersal component is typically estimated by comparing seed production following exclusive self- and cross-pollination, but such estimates are unbiased only if seed production is limited by ovule availability, rather than by pollen receipt or seed-development resources. To overcome this problem, we propose experimental and statistical methods based on a model of ovule fertilization and seed development that accounts for differential fertilization by self- and cross-pollen, limited ovule viability or receptivity, differential survival of self- and cross-zygotes and limited resource availability. Simulations illustrate that the proposed methods eliminate bias in estimated predispersal inbreeding depression caused by pollen limitation and can improve estimates under resource limitation. Application of these methods to two orchid species further demonstrates their utility in identifying and estimating diverse influences on reproductive performance under typical conditions. Although our theoretical results raise questions about the reported intensity of predispersal inbreeding depression, our proposed methods guard against bias while also providing insight into plant reproduction.


Subject(s)
Inbreeding , Models, Biological , Orchidaceae/genetics , Orchidaceae/growth & development , Orchidaceae/physiology , Reproduction , Seeds/genetics , Seeds/growth & development , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...