Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(45): e2312022120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903266

ABSTRACT

The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.


Subject(s)
Bacterial Proteins , Extracellular Polymeric Substance Matrix , Bacterial Proteins/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Biofilms , Bacillus subtilis/metabolism , Molecular Dynamics Simulation
2.
mBio ; 11(5)2020 09 29.
Article in English | MEDLINE | ID: mdl-32994335

ABSTRACT

Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Understanding the virulence mechanisms of K. pneumoniae is a priority and timely to design new therapeutics. Here, we demonstrate that K. pneumoniae limits the SUMOylation of host proteins in epithelial cells and macrophages (mouse and human) to subvert cell innate immunity. Mechanistically, in lung epithelial cells, Klebsiella increases the levels of the deSUMOylase SENP2 in the cytosol by affecting its K48 ubiquitylation and its subsequent degradation by the ubiquitin proteasome. This is dependent on Klebsiella preventing the NEDDylation of the Cullin-1 subunit of the ubiquitin ligase complex E3-SCF-ßTrCP by exploiting the CSN5 deNEDDylase. Klebsiella induces the expression of CSN5 in an epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-extracellular signal-regulated kinase (ERK)-glycogen synthase kinase 3 beta (GSK3ß) signaling pathway-dependent manner. In macrophages, Toll-like receptor 4 (TLR4)-TRAM-TRIF-induced type I interferon (IFN) via IFN receptor 1 (IFNAR1)-controlled signaling mediates Klebsiella-triggered decrease in the levels of SUMOylation via let-7 microRNAs (miRNAs). Our results revealed the crucial role played by Klebsiella polysaccharides, the capsule, and the lipopolysaccharide (LPS) O-polysaccharide, to decrease the levels of SUMO-conjugated proteins in epithelial cells and macrophages. A Klebsiella-induced decrease in SUMOylation promotes infection by limiting the activation of inflammatory responses and increasing intracellular survival in macrophages.IMPORTANCEKlebsiella pneumoniae has been singled out as an urgent threat to human health due to the increasing isolation of strains resistant to "last-line" antimicrobials, narrowing the treatment options against Klebsiella infections. Unfortunately, at present, we cannot identify candidate compounds in late-stage development for treatment of multidrug-resistant Klebsiella infections; this pathogen is exemplary of the mismatch between unmet medical needs and the current antimicrobial research and development pipeline. Furthermore, there is still limited evidence on K. pneumoniae pathogenesis at the molecular and cellular levels in the context of the interactions between bacterial pathogens and their hosts. In this research, we have uncovered a sophisticated strategy employed by Klebsiella to subvert the activation of immune defenses by controlling the modification of proteins. Our research may open opportunities to develop new therapeutics based on counteracting this Klebsiella-controlled immune evasion strategy.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion , Immunity, Innate , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/metabolism , Sumoylation , A549 Cells , Animals , Female , Humans , Interferon Type I/immunology , Klebsiella Infections/microbiology , Lung/microbiology , Macrophages, Alveolar/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
3.
PLoS Pathog ; 16(3): e1007969, 2020 03.
Article in English | MEDLINE | ID: mdl-32191774

ABSTRACT

Klebsiella pneumoniae is recognized as an urgent threat to human health due to the increasing isolation of multidrug resistant strains. Hypervirulent strains are a major concern due to their ability to cause life-threating infections in healthy hosts. The type VI secretion system (T6SS) is widely implicated in microbial antagonism, and it mediates interactions with host eukaryotic cells in some cases. In silico search for genes orthologous to T6SS component genes and T6SS effector genes across 700 K. pneumoniae genomes shows extensive diversity in T6SS genes across the K. pneumoniae species. Temperature, oxygen tension, pH, osmolarity, iron levels, and NaCl regulate the expression of the T6SS encoded by a hypervirulent K. pneumoniae strain. Polymyxins and human defensin 3 also increase the activity of the T6SS. A screen for regulators governing T6SS uncover the correlation between the transcription of the T6SS and the ability to kill E. coli prey. Whereas H-NS represses the T6SS, PhoPQ, PmrAB, Hfq, Fur, RpoS and RpoN positively regulate the T6SS. K. pneumoniae T6SS mediates intra and inter species bacterial competition. This antagonism is only evident when the prey possesses an active T6SS. The PhoPQ two component system governs the activation of K. pneumoniae T6SS in bacterial competitions. Mechanistically, PhoQ periplasmic domain, and the acid patch within, is essential to activate K. pneumoniae T6SS. Klebsiella T6SS also mediates anti-fungal competition. We have delineated the contribution of each of the individual VgrGs in microbial competition and identified VgrG4 as a T6SS effector. The DUF2345 domain of VgrG4 is sufficient to intoxicate bacteria and yeast. ROS generation mediates the antibacterial effects of VgrG4, and the antitoxin Sel1E protects against the toxic activity of VgrG4. Our findings provide a better understanding of the regulation of the T6SS in bacterial competitions, and place ROS as an early event in microbial competition.


Subject(s)
Bacterial Proteins/metabolism , Klebsiella pneumoniae/metabolism , Reactive Oxygen Species/metabolism , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/physiology , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae/genetics , Type VI Secretion Systems/genetics
4.
J Bacteriol ; 202(7)2020 03 11.
Article in English | MEDLINE | ID: mdl-31964697

ABSTRACT

Listeria monocytogenes is a Gram-positive firmicute that causes foodborne infections, in part due to its ability to use multiple strategies, including biofilm formation, to survive adverse growth conditions. As a potential way to screen for genes required for biofilm formation, we harnessed the ability of bacteria to accumulate mutations in the genome over time, diverging the properties of seemingly identical strains. By sequencing the genomes of four laboratory reference strains of the commonly used L. monocytogenes EGDe, we showed that each isolate contains single nucleotide polymorphisms (SNPs) compared with the reference genome. We discovered that two SNPs, contained in two independent genes within one of the isolates, impacted biofilm formation. Using bacterial genetics and phenotypic assays, we confirmed that rsbU and rmlA influence biofilm formation. RsbU is the upstream regulator of the alternative sigma factor SigB, and mutation of either rsbU or sigB increased biofilm formation. In contrast, deletion of rmlA, which encodes the first enzyme for TDP-l-rhamnose biosynthesis, resulted in a reduction in the amount of biofilm formed. Further analysis of biofilm formation in a strain that still produces TDP-l-rhamnose but which cannot decorate the wall teichoic acid with rhamnose (rmlT mutant) showed that it is the decorated wall teichoic acid that is required for adhesion of the cells to surfaces. Together, these data uncover novel routes by which biofilm formation by L. monocytogenes can be impacted.IMPORTANCE Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Cell Wall/metabolism , Genome, Bacterial , Genomics , Listeria monocytogenes/physiology , Sigma Factor/metabolism , Bacterial Adhesion , Flagella/metabolism , Genomics/methods , Genotype , Polymorphism, Single Nucleotide , Rhamnose/metabolism , Whole Genome Sequencing
5.
J Bacteriol ; 202(6)2020 02 25.
Article in English | MEDLINE | ID: mdl-31907203

ABSTRACT

Bacteria are preyed upon by diverse microbial predators, including bacteriophage and predatory bacteria, such as Bdellovibrio bacteriovorus While bacteriophage are used as antimicrobial therapies in Eastern Europe and are being applied for compassionate use in the United States, predatory bacteria are only just beginning to reveal their potential therapeutic uses. However, predation by either predator type can falter due to different adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel Bdellovibrio isolates on Escherichia coli prey lawns, individual composite plaques were isolated containing both an RTP (rosette-tailed-phage)-like-phage and a B. bacteriovorus strain and showing central prey lysis and halos of extra lysis. Combining the purified phage with a lab strain of B. bacteriovorus HD100 recapitulated haloed plaques and increased killing of the E. coli prey in liquid culture, showing an effective side-by-side action of these predators compared to their actions alone. Using approximate Bayesian computation to select the best fitting from a variety of different mathematical models demonstrated that the experimental data could be explained only by assuming the existence of three prey phenotypes: (i) sensitive to both predators, (ii) genetically resistant to phage only, and (iii) plastic resistant to B. bacteriovorus only. Although each predator reduces prey availability for the other, high phage numbers did not abolish B. bacteriovorus predation, so both predators are competent to coexist and are causing different selective pressures on the bacterial surface while, in tandem, controlling prey bacterial numbers efficiently. This suggests that combinatorial predator therapy could overcome problems of phage resistance.IMPORTANCE With increasing levels of antibiotic resistance, the development of alternative antibacterial therapies is urgently needed. Two potential alternatives are bacteriophage and predatory bacteria. Bacteriophage therapy has been used, but prey/host specificity and the rapid acquisition of bacterial resistance to bacteriophage are practical considerations. Predatory bacteria are of interest due to their broad Gram-negative bacterial prey range and the lack of simple resistance mechanisms. Here, a bacteriophage and a strain of Bdellovibrio bacteriovorus, preyed side by side on a population of E. coli, causing a significantly greater decrease in prey numbers than either alone. Such combinatorial predator therapy may have greater potential than individual predators since prey surface changes selected for by each predator do not protect prey against the other predator.


Subject(s)
Bacteriophages/physiology , Bdellovibrio bacteriovorus/virology , Escherichia coli/physiology , Host-Pathogen Interactions , Models, Biological , Algorithms , Environment , Genome, Bacterial , Genomics/methods
6.
EMBO J ; 38(17): e100772, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31355487

ABSTRACT

Bacterial usage of the cyclic dinucleotide c-di-GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c-di-GMP metabolism, particularly on regulatory mechanisms governing control of EAL c-di-GMP phosphodiesterases. Herein, we provide high-resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full-length cAMP-bound form reveals the sensory N-terminus to be a domain-swapped variant of the cNMP/CRP family, which in the cAMP-activated state holds the C-terminal EAL enzyme in a phosphodiesterase-active conformation. Using a truncation mutant, we trap both a half-occupied and inactive apo-form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c-di-GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c-di-GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing "action potentials" to be generated by each GGDEF protein to effect their specific functions.


Subject(s)
Bdellovibrio bacteriovorus/metabolism , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio bacteriovorus/chemistry , Bdellovibrio bacteriovorus/genetics , Binding Sites , Crystallography, X-Ray , Gene Expression Regulation, Bacterial , Models, Molecular , Nucleotides/metabolism , Phosphoric Diester Hydrolases/genetics , Protein Binding , Protein Conformation , Signal Transduction
7.
Microbiology (Reading) ; 165(2): 138-145, 2019 02.
Article in English | MEDLINE | ID: mdl-30520711

ABSTRACT

The fifth Young Microbiologists Symposium was held in Queen's University Belfast, Northern Ireland, in late August 2018. The symposium, focused on 'Microbe signalling, organization and pathogenesis', attracted 121 microbiologists from 15 countries. The meeting allowed junior scientists to present their work to a broad audience, and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society and the Microbiology Society. Sessions covered recent advances in areas of microbiology including gene regulation and signalling, secretion and transport across membranes, infection and immunity, and antibiotics and resistance mechanisms. In this Meeting Report, we highlight some of the most significant advances and exciting developments communicated during talks and poster presentations.


Subject(s)
Bacteria/metabolism , Bacteria/pathogenicity , Signal Transduction , Animals , Bacteria/genetics , Bacteria/immunology , Bacterial Secretion Systems , Biofilms/growth & development , Drug Resistance, Microbial , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/immunology , Humans , Microbiology/organization & administration , Microbiology/trends , Signal Transduction/genetics , Signal Transduction/immunology
8.
Sci Rep ; 7(1): 6730, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751732

ABSTRACT

BslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous proteins can substitute for BslA in B. subtilis and confer a degree of protection, whereas YweA cannot. The degree to which the proteins functionally substitute for native BslA correlates with their in vitro biophysical properties. Our results demonstrate the use of naturally-evolved variants to provide a framework for teasing out the molecular basis of interfacial self-assembly.


Subject(s)
Bacillus amyloliquefaciens/genetics , Bacillus licheniformis/genetics , Bacillus pumilus/genetics , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Amino Acid Sequence , Bacillus amyloliquefaciens/metabolism , Bacillus licheniformis/metabolism , Bacillus pumilus/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Elasticity , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Complementation Test , Genetic Variation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Phenotype , Phylogeny , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
9.
Infect Immun ; 85(9)2017 09.
Article in English | MEDLINE | ID: mdl-28652313

ABSTRACT

Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella pneumoniae/enzymology , Lipid A/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Gene Deletion , Gene Expression Regulation, Bacterial , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Lepidoptera , Macrophages/microbiology , Mass Spectrometry , Mice , Phagocytosis , Virulence
10.
J Biol Chem ; 292(29): 12041-12053, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28546427

ABSTRACT

Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C-methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S-adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S-adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient ΔspeD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/agonists , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Polysaccharides, Bacterial/biosynthesis , Spermidine/metabolism , Transcription Factors/agonists , Adenosylmethionine Decarboxylase/genetics , Adenosylmethionine Decarboxylase/metabolism , Bacillus subtilis/cytology , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cadaverine/analogs & derivatives , Cadaverine/metabolism , Gene Deletion , Gene Expression Profiling , Methionine/metabolism , Methylation , Nitrogen Cycle , Operon , Purines/metabolism , S-Adenosylmethionine/metabolism , Single-Cell Analysis , Spermidine/analogs & derivatives , Transcription Factors/genetics , Transcription Factors/metabolism
11.
EMBO Mol Med ; 9(4): 430-447, 2017 04.
Article in English | MEDLINE | ID: mdl-28202493

ABSTRACT

Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Recent studies highlight the emergence of multidrug-resistant K. pneumoniae strains which show resistance to colistin, a last-line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB-associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K. pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ-governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence.


Subject(s)
Drug Resistance, Bacterial , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Load , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Colistin/pharmacology , Disease Models, Animal , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/pathology , Lepidoptera , Lipid A/chemistry , Lung/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Polymyxins/pharmacology , Survival Analysis , Virulence
12.
FEMS Microbiol Rev ; 39(5): 649-69, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25907113

ABSTRACT

Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Extracellular Matrix/metabolism , Adhesins, Bacterial/metabolism , Cellulose/metabolism , Extracellular Matrix/chemistry , Flagella/metabolism , Protein Transport
13.
Proc Natl Acad Sci U S A ; 112(17): 5419-24, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25870300

ABSTRACT

The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded ß-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Stability , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary
14.
Mol Microbiol ; 93(4): 587-98, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24988880

ABSTRACT

Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix.


Subject(s)
Bacillus subtilis/physiology , Biofilms/growth & development , Extracellular Matrix/metabolism , Gene Expression Regulation, Bacterial , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism
15.
Cell ; 156(4): 844-54, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24529384

ABSTRACT

Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 µM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 µM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 µM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.


Subject(s)
Bacillus subtilis/physiology , Biofilms/growth & development , Spermidine/analogs & derivatives , Amino Acid Sequence , Bacillus subtilis/growth & development , Molecular Sequence Data , Plankton/growth & development , Sequence Alignment , Spermidine/biosynthesis , Spermidine/metabolism , Spermidine/physiology , Vibrio cholerae/physiology , gamma-Aminobutyric Acid/metabolism
16.
J Bacteriol ; 196(1): 16-27, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24123822

ABSTRACT

Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Cytological Techniques/methods , Molecular Biology/methods , Phosphorylation , Protein Processing, Post-Translational
17.
Proc Natl Acad Sci U S A ; 110(33): 13600-5, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23904481

ABSTRACT

Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic "cap" region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Biofilms , Models, Molecular , Protein Conformation , Bacterial Proteins/metabolism , Biophysics , Fluorescent Antibody Technique , Hydrophobic and Hydrophilic Interactions , Microscopy, Confocal
18.
ISME J ; 7(1): 148-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22955231

ABSTRACT

Bacteriovorax marinus SJ is a predatory delta-proteobacterium isolated from a marine environment. The genome sequence of this strain provides an interesting contrast to that of the terrestrial predatory bacterium Bdellovibrio bacteriovorus HD100. Based on their predatory lifestyle, Bacteriovorax were originally designated as members of the genus Bdellovibrio but subsequently were re-assigned to a new genus and family based on genetic and phenotypic differences. B. marinus attaches to gram-negative bacteria, penetrates through the cell wall to form a bdelloplast, in which it replicates, as shown using microscopy. Bacteriovorax is distinct, as it shares only 30% of its gene products with its closest sequenced relatives. Remarkably, 34% of predicted genes over 500 nt in length were completely unique with no significant matches in the databases. As expected, Bacteriovorax shares several characteristic loci with the other delta-proteobacteria. A geneset shared between Bacteriovorax and Bdellovibrio that is not conserved among other delta-proteobacteria such as Myxobacteria (which destroy prey bacteria externally via lysis), or the non-predatory Desulfo-bacteria and Geobacter species was identified. These 291 gene orthologues common to both Bacteriovorax and Bdellovibrio may be the key indicators of host-interaction predatory-specific processes required for prey entry. The locus from Bdellovibrio bacteriovorus is implicated in the switch from predatory to prey/host-independent growth. Although the locus is conserved in B. marinus, the sequence has only limited similarity. The results of this study advance understanding of both the similarities and differences between Bdellovibrio and Bacteriovorax and confirm the distant relationship between the two and their separation into different families.


Subject(s)
Bdellovibrio/genetics , Deltaproteobacteria/genetics , Seawater/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio/classification , Bdellovibrio/physiology , Deltaproteobacteria/classification , Deltaproteobacteria/physiology , Food Chain , Gene Expression Regulation, Bacterial , Genome, Bacterial , Molecular Sequence Data , Phylogeny , Plasmids
19.
BMC Genomics ; 13: 670, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23181807

ABSTRACT

BACKGROUND: Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as "obligate predators" because only by mutations, often in gene bd0108, are 1 in ~1x10(7) of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT). However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome. RESULTS: To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT-rich genes predicted to be recently acquired. CONCLUSIONS: The natural niche and dual predatory, and prey-independent growth of the B. bacteriovorus Tiberius strain afforded it extensive non-predatory contact with other marine and freshwater bacteria from which LGT is evident in its genome. Thus despite their arsenal of DNA-lytic enzymes; Bdellovibrio are not always predatory in natural niches and their genomes are shaped by acquiring whole genes from other bacteria.


Subject(s)
Bacterial Proteins/genetics , Bdellovibrio/growth & development , Bdellovibrio/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Genome, Bacterial , Antibiosis , Bdellovibrio/pathogenicity , Escherichia coli/growth & development , Mutation , Rivers/microbiology , Symbiosis , Synteny
20.
BMC Microbiol ; 12: 99, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22676653

ABSTRACT

BACKGROUND: Bdellovibrio bacteriovorus HD100 must regulate genes in response to a variety of environmental conditions as it enters, preys upon and leaves other bacteria, or grows axenically without prey. In addition to "housekeeping" sigma factors, its genome encodes several alternate sigma factors, including 2 Group IV-RpoE-like proteins, which may be involved in the complex regulation of its predatory lifestyle. RESULTS: We find that one sigma factor gene, bd3314, cannot be deleted from Bdellovibrio in either predatory or prey-independent growth states, and is therefore possibly essential, likely being an alternate sigma 70. Deletion of one of two Group IV-like sigma factor genes, bd0881, affects flagellar gene regulation and results in less efficient predation, although not due to motility changes; deletion of the second, bd0743, showed that it normally represses chaperone gene expression and intriguingly we find an alternative groES gene is expressed at timepoints in the predatory cycle where intensive protein synthesis at Bdellovibrio septation, prior to prey lysis, will be occurring. CONCLUSIONS: We have taken the first step in understanding how alternate sigma factors regulate different processes in the predatory lifecycle of Bdellovibrio and discovered that alternate chaperones regulated by one of them are expressed at different stages of the lifecycle.


Subject(s)
Bdellovibrio/genetics , Chaperonin 10/biosynthesis , Chaperonin 60/biosynthesis , Gene Expression Regulation, Bacterial , Sigma Factor/genetics , Chaperonin 10/genetics , Chaperonin 60/genetics , Flagella/genetics , Genes, Bacterial , Genes, Essential , Mutagenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...