Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
2.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645021

ABSTRACT

Background: Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunisations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripharal immune cells from respiratory infection allergy/asthma prone (IAP) infants were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fishers Exact p-value = 0.01). Results: An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPLA), a TLR agonist, partially reversing this signature at a subset of CpGs, suggesting the potential for epigenetic remodelling. Conclusions: This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for furture investigation.

3.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630846

ABSTRACT

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Subject(s)
COVID-19 , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , SARS-CoV-2 , Prospective Studies , Multiomics , Chemokines
4.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405760

ABSTRACT

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

5.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139132

ABSTRACT

Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.


Subject(s)
Sphingolipids , Virus Diseases , Humans , Sphingolipids/metabolism , Virus Diseases/drug therapy , Signal Transduction , Lipid Metabolism , Metabolic Networks and Pathways , Sphingosine/metabolism
6.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986828

ABSTRACT

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.

7.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37327781

ABSTRACT

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Longitudinal Studies , Multiomics , Disease Progression
8.
Res Sq ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38196658

ABSTRACT

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant (SOT) recipients, who have atypical but poorly characterized immune responses to SARS-CoV-2 infection. We sought to understand and the host immunologic and microbial features of COVID-19 in SOT recipients by leveraging a prospective multicenter cohort of 1164 hospitalized patients. Using multi-omic immuoprofiling, we studied 86 SOT recipients in this cohort, who were age- and sex-matched 2:1 with 172 non-SOT controls. PBMC and nasal transcriptional profiling unexpectedly demonstrated upregulation of innate immune pathways related to interferon (IFN) and Toll-like receptor signaling, and complement activation, in SOT recipients. Longitudinal analyses across the first 30-days post-hospitalization demonstrated persistent upregulation of these innate immunity pathways in SOT recipients. The levels of several proinflammatory serum chemokines, such as CX3CL1 and KITLG, were also higher in SOT recipients at the time of hospitalization, although IFN-gamma levels were lower. We observed differential dynamics of CXCL11, which remained persistently elevated in SOT recipients over the course of hospitalization. Nasal microbiome alpha diversity was higher in SOT recipients versus controls, but no differences in taxonomic abundance beyond SARS-CoV-2 were observed. SOT recipients had higher nasal SARS-CoV-2 viral loads and impaired viral clearance compared to controls. Antibody analysis demonstrated lower anti-SARS-CoV-2 spike IgG levels in SOT recipients upon hospitalization, but no distinctions over time compared to controls. Mass cytometry demonstrated marked differences in blood immune cell populations, with SOT recipients exhibiting decreased plasmablasts and transitional B cells, and increased senescent T cells. Severe disease in SOT recipients was characterized by a less robust induction of inflammatory chemokines, such as IL-6 and CCL7, and a more subtle proinflammatory transcriptional response in the blood and airway. Together, our study reveals distinct immune features and altered viral dynamics in SOT recipients compared to non-SOT controls. We unexpectedly find that SOT recipients exhibit an augmented, predominantly innate immune response in both the blood and upper respiratory tract that remains relatively stable across disease severity, in contrast to non-SOT controls. These findings may relate to the paradoxical observation that SOT recipients have similar COVID-19 mortality rates versus the general population, despite being more susceptible to SARS-CoV-2 infection, remaining infectious longer, and having higher rates of hospitalization. In summary, we find that COVID-19 in SOT recipients is characterized by a biologically distinct immune state, suggesting the potential for unique prognostic biomarkers and therapeutic approaches in this vulnerable population.

9.
PLoS One ; 17(9): e0274912, 2022.
Article in English | MEDLINE | ID: mdl-36156603

ABSTRACT

BACKGROUND: COVID-19 has disproportionately impacted low-income immigrant communities. There is concern that the current uptake of COVID-19 vaccines is suboptimal and that this may be contributing to COVID-19 inequities. However, little is known about the acceptability of COVID-19 vaccines among immigrants in the U.S. Our goal was to gauge COVID-19 vaccine intentions among Brazilian immigrant women living in the U.S. METHODS: We conducted an online survey between July and August 2020 offered in Portuguese and English languages among a convenience sample of Brazilian immigrant women ages 18 years and older. Women were recruited through online advertisements by community-based organizations and social media groups to complete a survey that assessed intention to get a COVID-19 vaccine, attitudes toward vaccines, and perceptions about the pandemic. RESULTS: Of the total sample (N = 353), most (70.8%) indicated they intended to get a COVID-19 vaccine. In bivariate analyses, vaccine intentions were significantly associated with perceptions about the severity of the pandemic, trusted sources of health information, and the number of years lived in the U.S. Multinomial logistic regression models revealed that those who did not intend to be vaccinated had lived a longer time in the U.S. (OR: -0.12 95% CI: -0.19, -0.05), perceived the pandemic to be a minor issue (OR: 1.52, 95% CI: 0.62, 2.42), and trusted information from social networks (OR: -1.94, 95% CI: -3.25, -0.63) or private news sources (OR: -1.71, 95% CI: -2.78, -0.63). CONCLUSIONS: While most women reported they would get a COVID-19 vaccine, efforts to reach those who may be hesitant should target those who have lived in the U.S. for longer periods of time and do not perceive the pandemic to be a major crisis. Healthcare providers may be particularly suited to deliver this information given high levels of trust.


Subject(s)
COVID-19 , Emigrants and Immigrants , Adolescent , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Intention , Vaccination
10.
Article in English | MEDLINE | ID: mdl-33805055

ABSTRACT

While an increasing body of data suggests that marginalized groups have been disproportionately impacted by COVID-19, little has been published about the specific impact on Brazilian immigrants in the U.S. We conducted 15 key informant interviews, one of which included two participants (n = 16), with representatives from social service agencies, healthcare, and faith-based organizations serving Brazilian immigrants. Key informants were asked about the community's experiences with COVID-19 testing and treatment, responses to CDC (Centers for Disease Control) guidelines, perceptions about the virus, and the pandemic's impact on physical and mental health. Results suggest that COVID-19 has profoundly impacted Brazilian immigrants' mental and physical health. Key informants perceived that community members faced higher risk of COVID-19 infection due to overcrowded living conditions and over-representation in public-facing and informal (e.g., housecleaning) jobs. They reported barriers to COVID-19-related healthcare services including language, immigration status, and fear of deportation. Brazilian cultural norms surrounding hygiene practices, social distancing, and information distribution have shaped the community's pandemic response. The Brazilian community has faced extensive social, economic, and health ramifications due to the pandemic. While not unique to this community, pre-existing concerns about social disadvantage suggest a particular vulnerability of this population to the virus.


Subject(s)
COVID-19 , Emigrants and Immigrants , Brazil/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...