Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 754: 109932, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373542

ABSTRACT

d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 µM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.


Subject(s)
L-Lactate Dehydrogenase , Lactate Dehydrogenases , Lactic Acid , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/chemistry , Lactic Acid/metabolism , Oxalates , Protein Isoforms , Mutation
2.
Biochem Biophys Res Commun ; 690: 149294, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38011772

ABSTRACT

Oligomeric enzymes containing multiple active sites are usually considered to perform their catalytic action at higher rates when compared with their monomeric counterparts. This implies, in turn, that the activity performed by different holoenzyme subunits features additivity. Nevertheless, the extent of this additivity occurring in holoenzymes is far from being adequately understood. To tackle this point, we used tetrameric rabbit lactate dehydrogenase (rbLDH) as a model system to assay the reduction of pyruvate catalysed by this enzyme at the expense of ß-NADH under pre-steady-state conditions. In particular, we observed the kinetics of reactions triggered by concentrations of ß-NADH equimolar to 1, 2, 3, or all 4 subunits of the rbLDH holoenzyme, in the presence of an excess of pyruvate. Surprisingly, when the concentration of the limiting reactant exceeded that of a single holoenzyme subunit, we observed a sharp slowdown of the enzyme conformational rearrangements associated to the generation and the release of l-lactate. Furthermore, using a model to interpret the complex kinetics observed under the highest concentration of the limiting reactant, we estimated the diversity of the rates describing the action of the different rbLDH subunits.


Subject(s)
L-Lactate Dehydrogenase , NAD , Animals , Rabbits , L-Lactate Dehydrogenase/metabolism , NAD/metabolism , Muscle, Skeletal/metabolism , Pyruvic Acid , Holoenzymes , Kinetics
3.
Biochimie ; 213: 66-81, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37201648

ABSTRACT

The Mycobacterium tuberculosis low-molecular weight protein tyrosine phosphatase (MptpA) is responsible for the inhibition of phagosome-lysosome fusion and is essential for the bacterium pathogenicity. This inhibition implies that M. tuberculosis is not exposed to a strongly acidic environment in vivo, enabling successful propagation in host cells. Remarkably, MptpA has been previously structurally and functionally investigated, with special emphasis devoted to the enzyme properties at pH 8.0. Considering that the virulence of M. tuberculosis is strictly dependent on the avoidance of acidic conditions in vivo, we analysed the pH-dependence of the structural and catalytic properties of MptpA. Here we show that this enzyme undergoes pronounced conformational rearrangements when exposed to acidic pH conditions, inducing a severe decrease of the enzymatic catalytic efficiency at the expense of phosphotyrosine (pTyr). In particular, a mild decrease of pH from 6.5 to 6.0 triggers a significant increase of K0.5 of MptpA for phosphotyrosine, the phosphate group of which we determined to feature a pKa2 equal to 5.7. Surface plasmon resonance experiments confirmed that MptpA binds poorly to pTyr at pH values < 6.5. Notably, the effectiveness of the MptpA competitive inhibitor L335-M34 at pH 6 does largely outperform the inhibition exerted at neutral or alkaline pH values. Overall, our observations indicate a pronounced sensitivity of MptpA to acidic pH conditions, and suggest the search for competitive inhibitors bearing a negatively charged group featuring pKa values lower than that of the substrate phosphate group.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Phosphotyrosine/metabolism , Bacterial Proteins/chemistry , Protein Tyrosine Phosphatases/metabolism , Hydrogen-Ion Concentration
4.
Arch Biochem Biophys ; 740: 109584, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37001749

ABSTRACT

The lactate dehydrogenase from rabbit skeletal muscle (rbLDH) is a tetrameric enzyme, known to undergo dissociation when exposed to acidic pH conditions. Moreover, it should be mentioned that this dissociation translates into a pronounced loss of enzyme activity. Notably, among the compounds able to stabilize proteins and enzymes, the disaccharide trehalose represents an outperformer. In particular, trehalose was shown to efficiently counteract quite a number of physical and chemical agents inducing protein denaturation. However, no information is available on the effect, if any, exerted by trehalose against the dissociation of protein oligomers. Accordingly, we thought it of interest to investigate whether this disaccharide is competent in preventing the dissociation of rbLDH induced by acidic pH conditions. Further, we compared the action of trehalose with the effects triggered by maltose and cellobiose. Surprisingly, both these disaccharides enhanced the dissociation of rbLDH, with maltose being responsible for a major effect when compared to cellobiose. On the contrary, trehalose was effective in preventing enzyme dissociation, as revealed by activity assays and by Dynamic Light Scattering (DLS) experiments. Moreover, we detected a significant decrease of both K0.5 and Vmax when the rbLDH activity was tested (at pH 7.5 and 6.5) as a function of pyruvate concentration in the presence of trehalose. Further, we found that trehalose induces a remarkable increase of Vmax when the enzyme is exposed to pH 5. Overall, our observations suggest that trehalose triggers conformational rearrangements of tetrameric rbLDH mirrored by resistance to dissociation and peculiar catalytic features.


Subject(s)
Maltose , Trehalose , Animals , Rabbits , Trehalose/chemistry , Maltose/chemistry , Maltose/metabolism , Cellobiose , L-Lactate Dehydrogenase/metabolism , Disaccharides/pharmacology , Disaccharides/metabolism , Hydrogen-Ion Concentration
5.
Biotechniques ; 74(1): 45-50, 2023 01.
Article in English | MEDLINE | ID: mdl-36621959

ABSTRACT

Amberlite has been shown to be an appropriate material for the adsorption of organic contaminants from aqueous solutions. In addition, Amberlite XAD-2 has been successfully used, as an alternative to Bio-Beads, to remove Triton X-100 from protein solutions, such as from samples of solubilized membrane proteins. However, Amberlite has not been tested as an adsorbent when a mixture of detergents is necessary to solubilize and refold a target protein. Here the authors show that Amberlite XAD-4 can be appropriately used to aid the purification process of proteins solubilized from inclusion bodies with the ternary detergent system consisting of Sarkosyl, Triton X-100 and CHAPS.


Subject(s)
Polystyrenes , Octoxynol
6.
Biotechnol Lett ; 44(11): 1313-1322, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36161539

ABSTRACT

OBJECTIVES: The aim of the present work was to identify a time-saving, effective, and low-cost strategy to produce in Escherichia coli a protein chimera representing a fusion anti-SARS-CoV-2 candidate vaccine, consisting of immunogenic and antigenic moieties. RESULTS: We overexpressed in E. coli BL21(DE3) a synthetic gene coding for CRM197-RBD, and the target protein was detected in inclusion bodies. CRM197-RBD was solubilized with 1 % (w/v) of the anionic detergent N-lauroylsarcosine (sarkosyl), the removal of which from the protein solution was conveniently accomplished with Amberlite XAD-4. The detergent-free CRM197-RBD was then separated from contaminating DNA using polyethylenimine (PEI), and finally purified from PEI by salting out with ammonium sulfate. Structural (CD spectrum) and functional (DNase activity) assays revealed that the CRM197-RBD chimera featured a native and active conformation. Remarkably, we determined a yield of purified CRM197-RBD equal to 23 mg per litre of culture. CONCLUSIONS: To produce CRM197-RBD, we devised the use of sarkosyl as an alternative to urea to solubilize the target protein from E. coli inclusion bodies, and the easy removal of sarkosyl by means of Amberlite XAD-4.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/biosynthesis , Escherichia coli , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
7.
Biochimie ; 199: 23-35, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398441

ABSTRACT

Among the functions exerted by eukaryotic lactate dehydrogenases, it is of importance the generation of lactate in muscles subjected to fatigue or to limited oxygen availability, with both these conditions triggering a decrease of cellular pH. However, the mutual dependence between lactate dehydrogenase (LDH) catalytic action and lactic acidosis is far from being fully understood. Here we show that the tetrameric LDH from rabbit skeletal muscle undergoes allosteric transitions as a function of pH, i.e. the enzyme obeys Michaelis-Menten kinetics at neutral or slightly alkaline pH values, and features sigmoidal kinetics at pH 6.5 or lower. Remarkably, we also report that a significant dissociation of tetrameric rabbit LDH occurs under acidic conditions, with pyruvate/NAD+ or citrate counteracting this effect. Moreover, citrate strongly activates rabbit LDH, inducing the enzyme to feature Michaelis-Menten kinetics. Further, using primary rabbit skeletal muscle cells we tested the generation of lactate as a function of pH, and we detected a parallel decrease of cytosolic pH and secretion of lactate. Overall, our observations indicate that lactic acidosis is antagonized by LDH dissociation, the occurrence of which is regulated by citrate and by allosteric transitions of the enzyme induced by pyruvate.


Subject(s)
Acidosis, Lactic , L-Lactate Dehydrogenase , Animals , Citrates , Hydrogen-Ion Concentration , Kinetics , L-Lactate Dehydrogenase/metabolism , Lactic Acid , Muscle, Skeletal/metabolism , Pyruvic Acid , Rabbits
8.
Biosci Rep ; 42(1)2022 01 28.
Article in English | MEDLINE | ID: mdl-35048959

ABSTRACT

The aerobic energetic metabolism of eukaryotic cells relies on the glycolytic generation of pyruvate, which is subsequently channelled to the oxidative phosphorylation taking place in mitochondria. However, under conditions limiting oxidative phosphorylation, pyruvate is coupled to alternative energetic pathways, e.g. its reduction to lactate catalyzed by lactate dehydrogenases (LDHs). This biochemical process is known to induce a significant decrease in cytosolic pH, and is accordingly denoted lactic acidosis. Nevertheless, the mutual dependence of LDHs action and lactic acidosis is far from being fully understood. Using human LDH-A, here we show that when exposed to acidic pH this enzyme is subjected to homotropic allosteric transitions triggered by pyruvate. Conversely, human LDH-A features Michaelis-Menten kinetics at pH values equal to 7.0 or higher. Further, citrate, isocitrate, and malate were observed to activate human LDH-A, both at pH 5.0 and 6.5, with citrate and isocitrate being responsible for major effects. Dynamic light scattering (DLS) experiments revealed that the occurrence of allosteric kinetics in human LDH-A is mirrored by a consistent dissociation of the enzyme tetramer, suggesting that pyruvate promotes tetramer association under acidic conditions. Finally, using the human liver cancer cell line HepG2 we isolated cells featuring cytosolic pH equal to 7.3 or 6.5, and we observed a concomitant decrease in cytosolic pH and lactate secretion. Overall, our observations indicate the occurrence of a negative feedback between lactic acidosis and human LDH-A activity, and a complex regulation of this feedback by pyruvate and by some intermediates of the Krebs cycle.


Subject(s)
Lactate Dehydrogenase 5/chemistry , Pyruvates/chemistry , Humans , Hydrogen-Ion Concentration , Lactic Acid
9.
Biochem Biophys Res Commun ; 558: 79-85, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33906110

ABSTRACT

During 2020, the COVID-19 pandemic affected almost 108 individuals. Quite a number of vaccines against COVID-19 were therefore developed, and a few recently received authorization for emergency use. Overall, these vaccines target specific viral proteins by antibodies whose synthesis is directly elicited or indirectly triggered by nucleic acids coding for the desired targets. Among these targets, the receptor binding domain (RBD) of COVID-19 spike protein (SP) does frequently occur in the repertoire of candidate vaccines. However, the immunogenicity of RBD per se is limited by its low molecular mass, and by a structural rearrangement of full-length SP accompanied by the detachment of RBD. Here we show that the RBD of COVID-19 SP can be conveniently produced in Escherichia coli when fused to a fragment of CRM197, a variant of diphtheria toxin currently used for a number of conjugated vaccines. In particular, we show that the CRM197-RBD chimera solubilized from inclusion bodies can be refolded and purified to a state featuring the 5 native disulphide bonds of the parental proteins, the competence in binding angiotensin-converting enzyme 2, and a satisfactory stability at room temperature. Accordingly, our observations provide compulsory information for the development of a candidate vaccine directed against COVID-19.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Base Sequence , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Mass Spectrometry , Models, Molecular , Protein Refolding , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/isolation & purification , Temperature , Time Factors
10.
Biochem Biophys Res Commun ; 534: 526-532, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33223051

ABSTRACT

The DNA polymerase from african swine fever virus (ASFV Pol X), lacking both 8 kDa and thumb domains, is the smallest enzyme featuring competence in DNA extension. Here we show that ASFV Pol X features poor filling activity of DNA gaps consisting of 15 bases, and exerts a more efficient action at the expense of DNA substrates containing a recessed end of equal length. We also show that shortening the recessed end of DNA substrates decreases the rate of DNA elongation catalysed by ASFV Pol X. Finally, by means of stopped-flow experiments we were able to determine that DNA binding is a step responsible for restraining the efficiency of ASFV Pol X catalytic action.


Subject(s)
African Swine Fever Virus/metabolism , African Swine Fever/virology , DNA, Viral/metabolism , DNA-Directed DNA Polymerase/metabolism , Viral Proteins/metabolism , African Swine Fever Virus/chemistry , African Swine Fever Virus/enzymology , Animals , DNA, Viral/chemistry , DNA-Directed DNA Polymerase/chemistry , Models, Molecular , Substrate Specificity , Swine/virology , Viral Proteins/chemistry
11.
Biochem Biophys Res Commun ; 529(4): 869-875, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32819591

ABSTRACT

Deinococcus radiodurans is a Gram positive bacterium the capability of which to withstand high doses of ionizing radiations is well known. Physiologically speaking, D. radiodurans is a proteolytic prokaryote able to express and secrete quite a number of proteases, and to use amino acids as an energy source. When considering this, it is surprising that little information is available on the biochemical components responsible for the uptake of peptides in D. radiodurans. Here we report on the purification and characterization of an ABC peptide transporter, isolated from D. radiodurans cells grown in tryptone-glucose-yeast extract (TGY) medium. In particular, we show here that the action of this transporter (denoted DR1571, SwissProt data bank accession number Q9RU24 UF71_DEIRA) is exerted on peptides containing at least 3 amino acids. Further, using tetra-peptides as model systems, we were able to observe that the DR1571 protein does not bind to peptides containing phenylalanine or valine, but associates with high efficiency to tetra-glycine, and with moderate affinity to tetra-peptides containing arginine or aspartate.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Deinococcus/enzymology , Oligopeptides/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Binding Sites , Deinococcus/genetics , Enzyme Assays , Gene Expression , Kinetics , Molecular Weight , Oligopeptides/chemistry , Protein Binding , Substrate Specificity
12.
Biochemistry ; 59(11): 1137-1148, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32142609

ABSTRACT

Mycobacterium tuberculosis is known to express a low-molecular weight protein tyrosine phosphatase. This enzyme, denoted as MptpA (Mycobacterium protein tyrosine phosphatase A), is essential for the pathogen to escape the host immune system and therefore represents a target for the search of antituberculosis drugs. MptpA was shown to undergo a conformational transition during catalysis, leading to the closure of the active site, which is by this means poised to the chemical step of dephosphorylation. Here we show that MptpA is subjected to substrate activation, triggered by p-nitrophenyl phosphate or by phosphotyrosine. Moreover, we show that the enzyme is also activated by phosphoserine, with serine being ineffective in enhancing MptpA activity. In addition, we performed assays under pre-steady-state conditions, and we show here that substrate activation is kinetically coupled to the closure of the active site. Surprisingly, when phosphotyrosine was used as a substrate, MptpA did not obey Michealis-Menten kinetics, but we observed a sigmoidal dependence of the reaction velocity on substrate concentration, suggesting the presence of an allosteric activating site in MptpA. This site could represent a promising target for the screening of MptpA inhibitors exerting their action independently of the binding to the enzyme active site.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Allosteric Site , Bacterial Proteins/genetics , Catalytic Domain , Kinetics , Molecular Weight , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Nitrophenols/chemistry , Nitrophenols/metabolism , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Phosphoserine/chemistry , Phosphoserine/metabolism , Phosphotyrosine/chemistry , Phosphotyrosine/metabolism , Protein Tyrosine Phosphatases/genetics , Substrate Specificity
13.
PLoS One ; 14(4): e0215411, 2019.
Article in English | MEDLINE | ID: mdl-30970012

ABSTRACT

We report here on the stability and catalytic properties of the HoLaMa DNA polymerase, a Klenow sub-fragment lacking the 3'-5' exonuclease domain. HoLaMa was overexpressed in Escherichia coli, and the enzyme was purified by means of standard chromatographic techniques. High-resolution NMR experiments revealed that HoLaMa is properly folded at pH 8.0 and 20°C. In addition, urea induced a cooperative folding to unfolding transition of HoLaMa, possessing an overall thermodynamic stability and a transition midpoint featuring ΔG and CM equal to (15.7 ± 1.9) kJ/mol and (3.5 ± 0.6) M, respectively. When the catalytic performances of HoLaMa were compared to those featured by the Klenow enzyme, we did observe a 10-fold lower catalytic efficiency by the HoLaMa enzyme. Surprisingly, HoLaMa and Klenow DNA polymerases possess markedly different sensitivities in competitive inhibition assays performed to test the effect of single dNTPs.


Subject(s)
DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Amino Acid Substitution , Catalytic Domain , DNA Polymerase I/genetics , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Kinetics , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Domains , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
14.
Microbiology (Reading) ; 164(10): 1266-1275, 2018 10.
Article in English | MEDLINE | ID: mdl-30052171

ABSTRACT

To understand the effects triggered by Mn2+ on Deinococcus radiodurans, the proteome patterns associated with different growth phases were investigated. In particular, under physiological conditions we tested the growth rate and the biomass yield of D. radiodurans cultured in rich medium supplemented or not with MnCl2. The addition of 2.5-5.0 µM MnCl2 to the medium neither altered the growth rate nor the lag phase, but significantly increased the biomass yield. When higher MnCl2 concentrations were used (10-250 µM), biomass was again found to be positively affected, although we did observe a concentration-dependent lag phase increase. The in vivo concentration of Mn2+ was determined in cells grown in rich medium supplemented or not with 5 µM MnCl2. By atomic absorption spectroscopy, we estimated 0.2 and 0.75 mM Mn2+ concentrations in cells grown in control and enriched medium, respectively. We qualitatively confirmed this observation using a fluorescent turn-on sensor designed to selectively detect Mn2+in vivo. Finally, we investigated the proteome composition of cells grown for 15 or 19 h in medium to which 5 µM MnCl2 was added, and we compared these proteomes with those of cells grown in the control medium. The presence of 5 µM MnCl2 in the culture medium was found to alter the pI of some proteins, suggesting that manganese affects post-translational modifications. Further, we observed that Mn2+ represses enzymes linked to nucleotide recycling, and triggers overexpression of proteases and enzymes linked to the metabolism of amino acids.


Subject(s)
Chlorides/metabolism , Deinococcus/growth & development , Deinococcus/metabolism , Manganese Compounds/metabolism , Manganese/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biomass , Chlorides/chemistry , Chlorides/pharmacology , Culture Media/chemistry , Deinococcus/chemistry , Deinococcus/drug effects , Manganese/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Nucleotides/metabolism , Protein Processing, Post-Translational/drug effects , Proteome/chemistry , Proteome/metabolism
15.
Dalton Trans ; 47(28): 9400-9410, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29952386

ABSTRACT

Within the general framework of our past and current studies dealing with the investigation of the photophysical properties and the biological behavior of the family of tetrazolato and tetrazole Re(i) complexes, we have endeavored to investigate their potential in the luminescent staining of proteins purified by acrylamide gel electrophoresis. With the aim to provide the first examples of luminescent Re(i) complexes to be exploited for this specific purpose, we have designed and prepared four new Re(i)-based species with the general formula fac-[Re(CO)3(N^N)(Tph)]2-/0, where Tph is the 5-(phenyl)tetrazolato anion and N^N is in turn represented by bathophenanthroline disulfonate (BPS), bathocuproine disulfonate (BCS) or by the SO3- free bathocuproine (BC). In this latter case, the neutral complex fac-[Re(CO)3(BC)(Tph)] served as a model species for the characterization of the former disulfonate complexes. Its cationic analogue fac-[Re(CO)3(BC)(Tph-Me)]+ was also prepared by a straightforward methylation reaction. All complexes displayed bright phosphorescence in organic media and, relative to their water solubility, the dianionic species fac-[Re(CO)3(BPS)(Tph)]2- and fac-[Re(CO)3(BCS)(Tph)]2- were also highly emissive in aqueous solution. The sulfonate groups played a key role in promoting and significantly enhancing the luminescent staining performances of both the Re(i) complexes fac-[Re(CO)3(BPS)(Tph)]2- and fac-[Re(CO)3(BCS)(Tph)]2- for proteins. Highlighting a response superior to that of Coomassie Blue and comparable to the one obtained by the well-known silver staining method, these dianionic Re(i)-complexes could efficiently detect up to 50 ng of pure Bovine Serum Albumin (BSA), as well as all proteins found in a Standard Protein Marker mix and from a total protein extract. A lower but still good response for luminescent protein staining was surprisingly obtained by employing the -SO3- free neutral and cationic complexes fac-[Re(CO)3(BC)(Tph)] and fac-[Re(CO)3(BC)(Tph-Me)]+, respectively. These preliminary results open up new possibilities for the further widening of the use of Re(i)-based complexes as luminescent protein staining agents.


Subject(s)
Coordination Complexes/chemistry , Phenanthrolines/chemistry , Rhenium/chemistry , Escherichia coli Proteins/chemistry , L-Lactate Dehydrogenase/chemistry , Lactoglobulins/chemistry , Luminescence , Muramidase/chemistry , Ovalbumin/chemistry , Serum Albumin, Bovine/chemistry , beta-Galactosidase/chemistry
16.
Biotechnol Lett ; 40(9-10): 1355-1363, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29948514

ABSTRACT

OBJECTIVE: We attempted to overexpress Human Histone Deacetylase 1 (HDAC1) in Escherichia coli. RESULTS: A synthetic gene coding for HDAC1, and optimised for E. coli codon usage, was cloned into pBADHisB, generating pBAD-rHDAC1. This construct was used to transform E. coli TOP10, and the target protein was overexpressed and partially purified. According to its elution volume from a Superdex 200 column, the partially purified rHDAC1 was obtained in aggregated form, i.e., as an octamer. The dissociation of octameric HDAC1 was tested using several agents, among which sodium dodecyl sulfate was competent in partially dissociating rHDAC1 aggregates. When the enzyme activity was tested in vitro using 3H-acetyl-labelled histones both protein samples, aggregated and dissociated, were active. Hence, our results suggest that E. coli represents an alternative system for the production of the recombinant HDAC1. CONCLUSIONS: We described a procedure for the overexpression in E. coli of recombinant HDAC1, the purification of which in active form can be successfully performed, although yielding an octameric aggregate.


Subject(s)
Escherichia coli/genetics , Histone Deacetylase 1/isolation & purification , Protein Engineering/methods , Recombinant Proteins/isolation & purification , Escherichia coli/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
Biochem Biophys Rep ; 10: 137-144, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955741

ABSTRACT

The activity of Prunus dulcis (sweet almond) ß-glucosidase at the expense of p-nitrophenyl-ß-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1-5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125-0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, ß-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric ß-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric ß-glucosidase was observed to be significantly activated by 0.125-0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of ß-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.

18.
Protein J ; 36(6): 453-460, 2017 12.
Article in English | MEDLINE | ID: mdl-28932939

ABSTRACT

A structural and kinetic characterization of a fragment of the HoLaMa DNA polymerase is presented here. In particular, a truncated form of HoLaMa, devoid of a consistent portion of the thumb domain, was isolated and purified. This HoLaMa fragment, denoted as ΔNter-HoLaMa, is surprisingly competent in catalyzing DNA extension, albeit featuring a kcat one order of magnitude lower than the corresponding kinetic constant of its full-length counterpart. The conformational rearrangements, if any, of enzyme tryptophanes triggered by DNA binding or extension were assayed under pre-steady-state conditions. The fluorescence of HoLaMa tryptophanes was found to significantly change upon DNA binding and extension. On the contrary, no fluorescence changes of ΔNter-HoLaMa tryptophanes were detected under the same conditions, suggesting that major conformational transitions are not required for DNA binding or extension by this truncated DNA polymerase.


Subject(s)
Catalytic Domain , DNA Polymerase I , Catalytic Domain/genetics , Catalytic Domain/physiology , DNA Polymerase I/chemistry , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Exonucleases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Dalton Trans ; 46(36): 12328-12338, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28891573

ABSTRACT

Two neutral cyclometalated Ir(iii)-tetrazolato complexes that differ by variations of the substituents on either the phenylpyridine or the tetrazolate ligand have been converted into the corresponding methylated and cationic analogues. NMR (1H and 13C) characterization of the Ir(iii) complexes provided the results in agreement with the chemo- and regioselective character of methylation at the N-3 position of the Ir(iii)-coordinated tetrazolato ring. This evidence was further corroborated by the analysis of the molecular structures of the cationic complexes obtained by X-ray diffraction. In view of the photophysical properties, the addition of a methyl moiety to neutral Ir(iii) tetrazolates, which behave as sky-blue or orange phosphors, caused a systematic red shift of their phosphorescence output. The transformation of neutral Ir(iii) tetrazolates into cationic Ir(iii)-tetrazole complexes was screened for any eventual antimicrobial activity in vitro against Gram negative (E. coli) and Gram positive (D. radiodurans) microorganisms. While both kinds of complexes were not active against E. coli, the conversion of the neutral Ir(iii) tetrazolates into the corresponding methylated and cationic Ir(iii)tetrazole derivatives determined the turn-on of a good to excellent antimicrobial activity toward Gram positive Deinococcus radiodurans, a non-pathogenic bacterium that is listed as one of the toughest microorganisms in light of its outstanding resistance to radiation and oxidative stress.


Subject(s)
Anti-Infective Agents/chemistry , Coordination Complexes/chemistry , Iridium/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Crystallography, X-Ray , Deinococcus/drug effects , Deinococcus/growth & development , Disk Diffusion Antimicrobial Tests , Escherichia coli/drug effects , Escherichia coli/growth & development , Ligands , Methylation , Molecular Conformation , Tetrazoles/chemistry
20.
Phys Chem Chem Phys ; 19(6): 4222-4230, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28116374

ABSTRACT

We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.


Subject(s)
DNA/biosynthesis , Fluorescence Resonance Energy Transfer/instrumentation , Genetic Techniques , DNA/metabolism , DNA Primers/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...