Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Med Chem ; 67(7): 5538-5566, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513086

ABSTRACT

Unlocking novel E3 ligases for use in heterobifunctional PROTAC degraders is of high importance to the pharmaceutical industry. Over-reliance on the current suite of ligands used to recruit E3 ligases could limit the potential of their application. To address this, potent ligands for DCAF15 were optimized using cryo-EM supported, structure-based design to improve on micromolar starting points. A potent binder, compound 24, was identified and subsequently conjugated into PROTACs against multiple targets. Following attempts on degrading a number of proteins using DCAF15 recruiting PROTACs, only degradation of BRD4 was observed. Deconvolution of the mechanism of action showed that this degradation was not mediated by DCAF15, thereby highlighting both the challenges faced when trying to expand the toolbox of validated E3 ligase ligands for use in PROTAC degraders and the pitfalls of using BRD4 as a model substrate.


Subject(s)
Nuclear Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Nuclear Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , Ligands
2.
Neuroimage ; 288: 120525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278429

ABSTRACT

Tobacco smoking is one of the main causes of premature death worldwide and quitting success remains low, highlighting the need to understand the neurobiological mechanisms underlying relapse. Preclinical models have shown that the amygdala and glutamate play an important role in nicotine addiction. The aims of this study were to compare glutamate and other metabolites in the amygdala between smokers and controls, and between different smoking states. Furthermore, associations between amygdalar metabolite levels and smoking characteristics were explored. A novel non-water-suppressed proton magnetic resonance spectroscopy protocol was applied to quantify neurometabolites in 28 male smokers (≥15 cigarettes/day) and 21 non-smoking controls, matched in age, education, verbal IQ, and weekly alcohol consumption. Controls were measured once (baseline) and smokers were measured in a baseline state (1-3 h abstinence), during withdrawal (24 h abstinence) and in a satiation state (directly after smoking). Baseline spectroscopy data were compared between groups by independent t-tests or Mann-Whitney-U tests. Smoking state differences were investigated by repeated-measures analyses of variance (ANOVAs). Associations between spectroscopy data and smoking characteristics were explored using Spearman correlations. Good spectral quality, high anatomical specificity (98% mean gray matter) and reliable quantification of most metabolites of interest were achieved in the amygdala. Metabolite levels did not differ between groups, but smokers showed significantly higher glutamine levels at baseline than satiation. Glx levels were negatively associated with pack-years and smoking duration. In summary, this study provides first insights into the neurometabolic profile of the amygdala in smokers with high anatomical specificity. By applying proton magnetic resonance spectroscopy, neurometabolites in smokers during different smoking states and non-smoking controls were quantified reliably. A significant shift in glutamine levels between smoking states was detected, with lower concentrations in satiation than baseline. The negative association between Glx levels and smoking quantity and duration may imply altered glutamate homeostasis with more severe nicotine addiction.


Subject(s)
Tobacco Use Disorder , Humans , Male , Glutamine , Smokers , Magnetic Resonance Spectroscopy , Glutamic Acid , Amygdala/diagnostic imaging
3.
Neuroimage Clin ; 39: 103490, 2023.
Article in English | MEDLINE | ID: mdl-37639901

ABSTRACT

Craving is a core symptom of cocaine use disorder and a major factor for relapse risk. To date, there is no pharmacological therapy to treat this disease or at least to alleviate cocaine craving as a core symptom. In animal models, impaired prefrontal-striatal signalling leading to altered glutamate release in the nucleus accumbens appear to be the prerequisite for cocaine-seeking. Thus, those network and metabolic changes may constitute the underlying mechanisms for cocaine craving and provide a potential treatment target. In humans, there is recent evidence for corresponding glutamatergic alterations in the nucleus accumbens, however, the underlying network disturbances that lead to this glutamate imbalance remain unknown. In this state-dependent randomized, placebo-controlled, double-blinded, cross-over multimodal study, resting state functional magnetic resonance imaging in combination with small-voxel proton magnetic resonance spectroscopy (voxel size: 9.4 × 18.8 × 8.4 mm3) was applied to assess network-level and associated neurometabolic changes during a non-craving and a craving state, induced by a custom-made cocaine-cue film, in 18 individuals with cocaine use disorder and 23 healthy individuals. Additionally, we assessed the potential impact of a short-term challenge of N-acetylcysteine, known to normalize disturbed glutamate homeostasis and to thereby reduce cocaine-seeking in animal models of addiction, compared to a placebo. We found increased functional connectivity between the nucleus accumbens and the dorsolateral prefrontal cortex during the cue-induced craving state. However, those changes were not linked to alterations in accumbal glutamate levels. Whereas we additionally found increased functional connectivity between the nucleus accumbens and a midline part of the thalamus during the cue-induced craving state. Furthermore, obsessive thinking about cocaine and the actual intensity of cocaine use were predictive of cue-induced functional connectivity changes between the nucleus accumbens and the thalamus. Finally, the increase in accumbal-thalamic connectivity was also coupled with craving-related glutamate rise in the nucleus accumbens. Yet, N-acetylcysteine had no impact on craving-related changes in functional connectivity. Together, these results suggest that connectivity changes within the fronto-accumbal-thalamic loop, in conjunction with impaired glutamatergic transmission, underlie cocaine craving and related clinical symptoms, pinpointing the thalamus as a crucial hub for cocaine craving in humans.


Subject(s)
Cocaine , Glutamic Acid , Animals , Humans , Acetylcysteine , Magnetic Resonance Imaging , Proton Magnetic Resonance Spectroscopy
4.
Dalton Trans ; 52(21): 7059-7070, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37092357

ABSTRACT

The N-Heterocyclic Carbene (NHC) alane and gallane adducts (NHC)·Cp*AlH2 (NHC = Me2ImMe5, iPr2ImMe6, Dipp2Im 7) and (NHC)·Cp*GaH2 (NHC = Me2ImMe8, iPr2ImMe9, Dipp2Im 10; R2Im = 1,3-di-organyl-imidazolin-2-ylidene; Dipp = 2,6 diisopropylphenyl; Me2ImMe = 1,3,4,5-tetra-methyl-imidazolin-2-ylidene; Cp* = C5Me5) were prepared either via the reaction of (AlH2Cp*)31 with the NHC or by the treatment of (NHC)·GaH2I (NHC = Me2ImMe2, iPr2ImMe3, Dipp2Im 4) with KCp*. The reaction of (AlH2Cp*)31 with the backbone saturated NHC Dipp2ImH led to NHC ring expansion instead with the formation of (RER-Dipp2ImHH2)AlCp* 12. Heating solutions of the gallium compounds 8-10 triggered reductive elimination of Cp*H and afforded Cp*GaI16. The reaction of the alane adduct (Me2ImMe)·Cp*AlH25 with cAACMe led to the insertion of cAACMe into the Al-H bond with the formation of the compound rac-(Me2ImMe)·AlHCp*(cAACMeH) rac-14. Heating a solution of rac-14 led to irreversible isomerisation with the formation of (Me2ImMe)·AlHCp*(cAACMeH) meso-14. The alane adducts (iPr2ImMe)·Cp*AlH26 and (Dipp2Im)·Cp*AlH27 react with cAACMe with the release of the NHC and formation of the exceptionally stable oxidative addition product (cAACMeH)AlHCp* 15. Reactions of the gallane adducts 8-10 with cAACMe led to reductive elimination of cAACMe-H2 and the formation of Cp*GaI16.

5.
J Sleep Res ; 32(4): e13866, 2023 08.
Article in English | MEDLINE | ID: mdl-36869598

ABSTRACT

Clinical guidelines recommend sodium oxybate (SXB; the sodium salt of γ-hydroxybutyrate) for the treatment of disturbed sleep and excessive daytime sleepiness in narcolepsy, yet the underlying mode of action is elusive. In a randomised controlled trial in 20 healthy volunteers, we aimed at establishing neurochemical changes in the anterior cingulate cortex (ACC) following SXB-enhanced sleep. The ACC is a core neural hub regulating vigilance in humans. At 2:30 a.m., we administered in a double-blind cross-over manner an oral dose of 50 mg/kg SXB or placebo, to enhance electroencephalography-defined sleep intensity in the second half of nocturnal sleep (11:00 p.m. to 7:00 a.m.). Upon scheduled awakening, we assessed subjective sleepiness, tiredness and mood and measured two-dimensional, J-resolved, point-resolved magnetic resonance spectroscopy (PRESS) localisation at 3-Tesla field strength. Following brain scanning, we used validated tools to quantify psychomotor vigilance test (PVT) performance and executive functioning. We analysed the data with independent t tests, false discovery rate (FDR) corrected for multiple comparisons. The morning glutamate signal (at 8:30 a.m.) in the ACC was specifically increased after SXB-enhanced sleep in all participants in whom good-quality spectroscopy data were available (n = 16; pFDR < 0.002). Further, global vigilance (10th-90th inter-percentile range on the PVT) was improved (pFDR < 0.04) and median PVT response time was shorter (pFDR < 0.04) compared to placebo. The data indicate that elevated glutamate in the ACC could provide a neurochemical mechanism underlying SXB's pro-vigilant efficacy in disorders of hypersomnolence.


Subject(s)
Disorders of Excessive Somnolence , Narcolepsy , Sodium Oxybate , Humans , Sodium Oxybate/pharmacology , Sodium Oxybate/therapeutic use , Glutamic Acid , Gyrus Cinguli/diagnostic imaging , Narcolepsy/drug therapy , Magnetic Resonance Spectroscopy
6.
Invest Radiol ; 58(2): 131-138, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35926077

ABSTRACT

OBJECTIVES: In spinal cord injury (SCI), the primary mechanical injury is followed by secondary sequelae that develop over the subsequent months and manifests in biochemical, functional, and microstructural alterations, at the site of direct injury but also in the spinal cord tissue above and below the actual lesion site. Noninvasive magnetic resonance spectroscopy (MRS) can be used to assess biochemical modulation occurring in the secondary injury phase, in addition to and supporting conventional MRI, and might help predict and improve patient outcome. In this article, we aimed to examine the metabolic levels in the pons of subacute SCI by means of in vivo proton MRS at 3 T and explore the association to clinical scores. MATERIALS AND METHODS: In this prospective study, between November 2015 and February 2018, single-voxel short-echo MRS data were acquired in healthy controls and in SCI subjects in the pons once during rehabilitation. Besides the single-point MRS examination, in addition, in participants with SCI, the clinical status (ie, motor, light touch, and pinprick scores) was assessed twice: (1) around the MRS session (approximately 10 weeks postinjury) and (2) before discharge (at approximately 9 months postinjury). The group differences were assessed with Kruskal-Wallis test, the post hoc comparison was assessed with Wilcoxon rank sum test, and the clinical correlations were conducted with Spearman rank correlation test. Bayes factor calculations completed the statistical part providing relevant evidence values. RESULTS: Twenty healthy controls (median age, 50 years; interquartile range, 41-55 years; 18 men) and 18 subjects with traumatic SCI (median age, 50 years; interquartile range, 32-58 years; 16 men) are included. Group comparison showed an increase of total N -acetylaspartate and combined glutamate and glutamine levels in complete SCI and a reduction of total creatine in incomplete paraplegic SCI. The proton MRS-based glutathione levels at baseline correlate to the motor score improvement during rehabilitation in incomplete subacute SCI. CONCLUSIONS: This exploratory study showed an association of the metabolite concentration of glutathione in the pons assessed at approximately 10 weeks after injury with the improvements of the motor score during the rehabilitation. Pontine glutathione levels in subjects with traumatic subacute incomplete SCI acquired remote from the injury site correlate to clinical score and might therefore be beneficial in the rehabilitation assessments.


Subject(s)
Protons , Spinal Cord Injuries , Male , Humans , Middle Aged , Prospective Studies , Bayes Theorem , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Pons/diagnostic imaging , Pons/pathology
7.
Sci Signal ; 15(720): eabd9099, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35133863

ABSTRACT

Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.


Subject(s)
Liver Regeneration , Tumor Suppressor Protein p53 , Animals , DNA Damage , Genes, Reporter , Liver Regeneration/genetics , Mice , Promoter Regions, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
SLAS Discov ; 26(9): 1212-1224, 2021 10.
Article in English | MEDLINE | ID: mdl-34543136

ABSTRACT

A proteolysis-targeting chimera (PROTAC) is a new technology that marks proteins for degradation in a highly specific manner. During screening, PROTAC compounds are tested in concentration-response (CR) assays to determine their potency, and parameters such as the half-maximal degradation concentration (DC50) are estimated from the fitted CR curves. These parameters are used to rank compounds, with lower DC50 values indicating greater potency. However, PROTAC data often exhibit biphasic and polyphasic relationships, making standard sigmoidal CR models inappropriate. A common solution includes manual omitting of points (the so-called masking step), allowing standard models to be used on the reduced data sets. Due to its manual and subjective nature, masking becomes a costly and nonreproducible procedure. We therefore used a Bayesian changepoint Gaussian processes model that can flexibly fit both nonsigmoidal and sigmoidal CR curves without user input. Parameters such as the DC50, maximum effect Dmax, and point of departure (PoD) are estimated from the fitted curves. We then rank compounds based on one or more parameters and propagate the parameter uncertainty into the rankings, enabling us to confidently state if one compound is better than another. Hence, we used a flexible and automated procedure for PROTAC screening experiments. By minimizing subjective decisions, our approach reduces time and cost and ensures reproducibility of the compound-ranking procedure. The code and data are provided on GitHub (https://github.com/elizavetasemenova/gp_concentration_response).


Subject(s)
Models, Theoretical , Proteins/chemistry , Proteolysis , Proteins/metabolism
9.
Magn Reson Med ; 86(6): 2945-2956, 2021 12.
Article in English | MEDLINE | ID: mdl-34431549

ABSTRACT

PURPOSE: To combine metabolite cycling with J-difference editing (MC MEGA) to allow for prospective frequency correction at each transient without additional acquisitions and compare it to water-suppressed MEGA-PRESS (WS MEGA) editing with intermittent prospective frequency correction. METHODS: Macromolecule-suppressed gamma aminobutyric acid (GABA)-edited experiments were performed in a phantom and in the occipital lobe (OCC) (n = 12) and medial prefrontal cortex (mPFC) (n = 8) of the human brain. Water frequency consistency and average offset over acquisition time were compared. GABA multiplet patterns, signal intensities, and choline subtraction artifacts were evaluated. In vivo GABA concentrations were compared and related to frequency offset in the OCC. RESULTS: MC MEGA was more stable with 21% and 32% smaller water frequency SDs in the OCC and mPFC, respectively. MC MEGA also had 39% and 40% smaller average frequency offsets in the OCC and mPFC, respectively. Phantom GABA multiplet patterns and signal intensities were similar. In vivo GABA concentrations were smaller in MC MEGA than in WS MEGA, with median (interquartile range) of 2.52 (0.27) and 2.29 (0.19) institutional units (i.u.), respectively in the OCC scans without prior DTI, and 0.99 (0.3) and 1.72 (0.5), respectively in the mPFC. OCC WS MEGA GABA concentrations, but not MC MEGA GABA concentrations were moderately correlated with frequency offset. mPFC WS MEGA spectra contained significantly more subtraction artifacts than MC MEGA spectra. CONCLUSION: MC MEGA is feasible and allows for prospective frequency correction at every transient. MC MEGA GABA concentrations were not biased by frequency offsets and contained less subtraction artifacts compared to WS MEGA.


Subject(s)
Artifacts , gamma-Aminobutyric Acid , Humans , Macromolecular Substances , Magnetic Resonance Spectroscopy , Prospective Studies
11.
Addict Biol ; 26(6): e13027, 2021 11.
Article in English | MEDLINE | ID: mdl-33825270

ABSTRACT

Tobacco use is one of the leading causes of premature death and morbidity worldwide. For smokers trying to quit, relapse rates are high, even after prolonged periods of abstinence. Recent findings in animal models highlight the role of alterations in glutamatergic projections from the prefrontal cortex onto the nucleus accumbens (NAc) in relapse vulnerability. Moreover, inflammatory responses in the NAc have been reported during withdrawal. A novel proton magnetic resonance spectroscopy (1 H-MRS) protocol was applied in humans to measure molar concentrations for glutamate, its sum with glutamine (Glx), and myoinositol plus glycine (mI + Gly) in the NAc (19 smokers, 20 matched controls). Smokers were measured at baseline and during withdrawal and satiation. No difference between groups or smoking states was found for glutamate or Glx, but, in smokers, stronger craving and more severe nicotine dependence were associated with lower baseline glutamate and Glx levels, respectively. Interestingly, mI + Gly concentrations were higher during withdrawal than baseline and correlated negatively with nicotine dependence severity and pack years of smoking. The lack of glutamatergic changes between groups and smoking states may imply that glutamate homeostasis is not significantly altered in smokers or that changes are too small for detection by 1 H-MRS. Moreover, the observed increase in mI + Gly may imply that neuroinflammatory processes occur in the NAc during nicotine withdrawal. These findings shed light on neurobiological relapse mechanisms in smokers and may provide the opportunity to develop more effective treatment options targeting the glutamate and neuroinflammation system.


Subject(s)
Glutamates/metabolism , Inflammation Mediators/metabolism , Nucleus Accumbens/physiopathology , Tobacco Smoking/physiopathology , Tobacco Use Disorder/physiopathology , Adult , Glutamic Acid/metabolism , Glutamine/metabolism , Glycine/metabolism , Humans , Inositol/metabolism , Magnetic Resonance Spectroscopy , Male , Nucleus Accumbens/diagnostic imaging , Patient Acuity , Smokers , Substance Withdrawal Syndrome/physiopathology
12.
Nat Commun ; 12(1): 366, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446657

ABSTRACT

Many tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


Subject(s)
Glycine/metabolism , Neoplasms/diet therapy , Serine/biosynthesis , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Glycine/analysis , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/physiopathology , Phosphoglycerate Dehydrogenase/metabolism , Serine/analysis
13.
Mol Psychiatry ; 26(9): 5277-5285, 2021 09.
Article in English | MEDLINE | ID: mdl-32601455

ABSTRACT

Cocaine addiction is characterized by overwhelming craving for the substance, which drives its escalating use despite adverse consequences. Animal models suggest a disrupted glutamate homeostasis in the nucleus accumbens to underlie addiction-like behavior. After chronic administration of cocaine, rodents show decreased levels of accumbal glutamate, whereas drug-seeking reinstatement is associated with enhanced glutamatergic transmission. However, due to technical obstacles, the role of disturbed glutamate homeostasis for cocaine addiction in humans remains only partially understood, and accordingly, no approved pharmacotherapy exists. Here, we applied a tailored proton magnetic resonance spectroscopy protocol that allows glutamate quantification within the human nucleus accumbens. We found significantly reduced basal glutamate concentrations in the nucleus accumbens in cocaine-addicted (N = 26) compared with healthy individuals (N = 30), and increased glutamate levels during cue-induced craving in cocaine-addicted individuals compared with baseline. These glutamatergic alterations, however, could not be significantly modulated by a short-term challenge of N-acetylcysteine (2400 mg/day on 2 days). Taken together, our findings reveal a disturbed accumbal glutamate homeostasis as a key neurometabolic feature of cocaine addiction also in humans. Therefore, we suggest the glutamatergic system as a promising target for the development of novel pharmacotherapies, and in addition, as a potential biomarker for a personalized medicine approach in addiction.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Cocaine-Related Disorders/drug therapy , Drug-Seeking Behavior , Glutamic Acid , Homeostasis , Humans , Nucleus Accumbens , Self Administration
14.
J Neuroimaging ; 31(1): 45-56, 2021 01.
Article in English | MEDLINE | ID: mdl-33118692

ABSTRACT

BACKGROUND AND PURPOSE: Intracranial vessel imaging by time-of-flight MR angiography (TOF-MRA) is one of the most frequently performed investigations in clinical neuroradiology. Particularly in the acute setting, fast imaging is needed for diagnostics, with a sequence ideally depicting even small vessels. The purpose of this study was to compare image and diagnostic quality of a novel ultrashort TOF-MRA sequence accelerated by spiral imaging (TOF-Spiral-short) to a standard TOF-MRA sequence accelerated by compressed sensing (TOF-CS) and to CT angiography (CTA). METHODS: Forty-one patients (36.6% showing vessel pathologies) who had undergone TOF-CS (acquisition duration: 4 minutes 8 seconds), TOF-Spiral-short (acquisition duration: 51 seconds; spiral imaging [accelerating factor 1.3], decreased field of view [accelerating factor 1.2], and increased voxel size [accelerating factor 3.3]), and CTA were retrospectively evaluated. Assessment of image quality, diagnostic confidence, and quantification of stenosis or aneurysm diameter were performed by two readers. RESULTS: Image quality at the skull base was slightly reduced with TOF-Spiral-short compared to CTA and TOF-CS (P < .05). Delineation of small intracranial vessels was improved by TOF-Spiral-short compared to CTA (P < .0001). In TOF-Spiral-short, diagnostic confidence was not reduced compared to TOF-CS in patients with vessel pathologies. We observed no significant difference in quantitative pathology assessment between TOF-Spiral-short and the other two modalities. TOF-Spiral-short enabled the correct identification of all vessel pathologies. CONCLUSIONS: Accelerating TOF-MRA of brain-feeding arteries by a novel ultrashort spiral imaging sequence shows adequate image quality and sufficient diagnostic performance. Thus, TOF-Spiral-short holds potential for fast and reliable diagnostics of vessel pathologies, particularly in the acute setting.


Subject(s)
Cerebral Angiography/methods , Cerebral Arteries/diagnostic imaging , Computed Tomography Angiography/methods , Magnetic Resonance Angiography/methods , Stroke/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
15.
Genes Dev ; 35(1-2): 117-132, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334825

ABSTRACT

The p53 tumor suppressor protein is a potent activator of proliferative arrest and cell death. In normal cells, this pathway is restrained by p53 protein degradation mediated by the E3-ubiquitin ligase activity of MDM2. Oncogenic stress releases p53 from MDM2 control, so activating the p53 response. However, many tumors that retain wild-type p53 inappropriately maintain the MDM2-p53 regulatory loop in order to continuously suppress p53 activity. We have shown previously that single point mutations in the human MDM2 RING finger domain prevent the interaction of MDM2 with the E2/ubiquitin complex, resulting in the loss of MDM2's E3 activity without preventing p53 binding. Here, we show that an analogous mouse MDM2 mutant (MDM2 I438K) restrains p53 sufficiently for normal growth but exhibits an enhanced stress response in vitro. In vivo, constitutive expression of MDM2 I438K leads to embryonic lethality that is rescued by p53 deletion, suggesting MDM2 I438K is not able to adequately control p53 function through development. However, the switch to I438K expression is tolerated in adult mice, sparing normal cells but allowing for an enhanced p53 response to DNA damage. Viewed as a proof of principle model for therapeutic development, our findings support an approach that would inhibit MDM2 E3 activity without preventing MDM2/p53 binding as a promising avenue for development of compounds to activate p53 in tumors with reduced on-target toxicities.


Subject(s)
Embryonic Development/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Animals , Antineoplastic Agents, Hormonal/pharmacology , Cell Proliferation/genetics , Cells, Cultured , Embryo, Mammalian/enzymology , Enzyme Activation/drug effects , Female , Male , Mice , Mutation , Tamoxifen/pharmacology
16.
Cancers (Basel) ; 12(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114383

ABSTRACT

Progression of glioma is frequently characterized by increases or enhanced spread of a hyperintensity in fluid attenuated inversion recovery (FLAIR) sequences. However, changes in FLAIR signal over time can be subtle, and conventional (CONV) visual reading is time-consuming. The purpose of this monocentric, retrospective study was to compare CONV reading to reading of subtraction maps (SMs) for serial FLAIR imaging. FLAIR datasets of cranial 3-Tesla magnetic resonance imaging (MRI), acquired at two different time points (mean inter-scan interval: 5.4 ± 1.9 months), were considered per patient in a consecutive series of 100 patients (mean age: 49.0 ± 13.7 years) diagnosed with glioma (19 glioma World Health Organization [WHO] grade I and II, 81 glioma WHO grade III and IV). Two readers (R1 and R2) performed CONV and SM reading by assessing overall image quality and artifacts, alterations in tumor-associated FLAIR signal over time (stable/unchanged or progressive) including diagnostic confidence (1-very high to 5-very low diagnostic confidence), and time needed for reading. Gold-standard (GS) reading, including all available clinical and imaging information, was performed by a senior reader, revealing progressive FLAIR signal in 61 patients (tumor progression or recurrence in 38 patients, pseudoprogression in 10 patients, and unclear in the remaining 13 patients). SM reading used an officially certified and commercially available algorithm performing semi-automatic coregistration, intensity normalization, and color-coding to generate individual SMs. The approach of SM reading revealed FLAIR signal increases in a larger proportion of patients according to evaluations of both readers (R1: 61 patients/R2: 60 patients identified with FLAIR signal increase vs. R1: 45 patients/R2: 44 patients for CONV reading) with significantly higher diagnostic confidence (R1: 1.29 ± 0.48, R2: 1.26 ± 0.44 vs. R1: 1.73 ± 0.80, R2: 1.82 ± 0.85; p < 0.0001). This resulted in increased sensitivity (99.9% vs. 73.3%) with maintained high specificity (98.1% vs. 98.8%) for SM reading when compared to CONV reading. Furthermore, the time needed for SM reading was significantly lower compared to CONV assessments (p < 0.0001). In conclusion, SM reading may improve diagnostic accuracy and sensitivity while reducing reading time, thus potentially enabling earlier detection of disease progression.

17.
Dalton Trans ; 49(32): 11108-11119, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32743616

ABSTRACT

The synthesis and characterization of N-heterocyclic carbene (NHC) and cyclic (alkyl)(amino)carbene (cAAC) gallane and chlorogallane adducts of the type (NHC)·GaH3 (NHC = Me2ImMe1, iPr2Im 2, iPr2ImMe3 and Dipp2ImH4; Me2ImMe = 1,3,4,5-tetra-methyl-imidazolin-2-ylidene; R2Im = 1,3-di-organyl-imidazolin-2-ylidene; Dipp = 2,6-diisopropylphenyl; Dipp2ImH = 1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene), (NHC)·GaH2Cl (NHC = iPr2ImMe9, Dipp2Im 10 and Dipp2ImH11; iPr2ImMe = 1,3 diisopropyl-4,5-dimethyl-imidazolin-2-ylidene), (NHC)·GaHCl2 (NHC = iPr2ImMe12, Dipp2Im 13 and Dipp2ImH14) and (cAACMe)·GaHCl215 is reported. Compounds 1-3 and 9-11 are unstable in solution as heating to the boiling temperature of toluene (110 °C) leads to decomposition into elemental gallium and the corresponding dihydroaminal NHC-H2. The reaction of the mono-NHC adducts with a second equivalent of NHC also afforded decomposition and formation of NHC-H2, whereas the reaction of the NHC-stabilized gallanes with one equivalent cAACMe leads to an insertion of the cAACMe carbene carbon atom into the Ga-H bond. The synthesis and characterization of (NHC)·GaH2(cAACMeH) (NHC = Me2ImMe5, iPr2ImMe6 and Dipp2Im 7), the products of an oxidative addition of (NHC)·GaH3 to cAACMe, are presented. The adduct (Dipp2ImH)·GaH34 reacts with two equivalents of cAACMe under the release of Dipp2ImH and insertion of two cAACMe molecules into the Ga-H bond to give the bisalkylgallane (cAACMeH)2GaH 8. If one or two hydrogen atoms of the NHC gallane adducts are replaced with an electron-withdrawing chloride substituent, a selective insertion of cAACMe into the Ga-H bond occurs only for the adducts of sterically less demanding NHCs such as iPr2ImMe. The reaction of cAACMe with (iPr2ImMe)·GaH2Cl 9 and (iPr2ImMe)·GaHCl212 afforded (iPr2ImMe)·GaHCl(cAACMeH) 16 and (iPr2ImMe)·GaCl2(cAACMeH) 17. The reaction of cAACMe with (NHC)·GaHCl2 and (NHC)·GaH2Cl (NHC = Dipp2Im, Dipp2ImH), adducts of the sterically more demanding NHCs, leads to an extrusion of the NHC to (cAACMe)·GaHCl215 and (cAACMeH)2GaCl 18.

18.
Nat Commun ; 11(1): 2094, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350255

ABSTRACT

Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2-ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2-ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage.


Subject(s)
DNA Damage , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , RING Finger Domains , Amino Acid Sequence , Cell Line, Tumor , Humans , Models, Molecular , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Multimerization , Structure-Activity Relationship , Ubiquitin/metabolism
19.
Cell Rep ; 30(2): 481-496.e6, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940491

ABSTRACT

Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.


Subject(s)
Myeloid Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Mice
20.
Clin Neuroradiol ; 30(2): 279-286, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31098666

ABSTRACT

PURPOSE: To assess the effect of compressed sensing (CS) on image quality and acquisition speed in routine brain magnetic resonance imaging (MRI). METHODS: During a 2-month implementation period of CS, two senior neuroradiologists, one MRI physicist and one application specialist optimized the CS acceleration factor to reduce scan time and improve spatial resolution, while maintaining image quality. Afterwards, two neuroradiologists independently scored image quality on a 5-point Likert scale in 3­dimensional (3D) fluid attenuation inversion recovery (FLAIR), 3D double inversion recovery (DIR), 3D T2, 3D T1, 3D T1 + gadoteric acid, axial T2, axial FLAIR, axial T2*, and 3D arterial time-of-flight MR angiography (art. TOF) sequences acquired during 1 week before (CS-) and after (CS+) the implementation of CS. Time of acquisition was recorded for all sequences. RESULTS: A total of 51 CS- and 48 CS+ patients were included. The median scan time reduction was 29.3% (range 0.0-58.4%), median voxel size reduction was 10.5% (0.0-33.3%). The CS+ image quality was rated superior for 3D FLAIR (p < 0.001), 3D T2 (p = 0.001), and axial T2* sequences (p = 0.024). For all other sequences, no statistical difference in image quality was observed. Interreader agreement regarding image quality was good for all sequences (weighted Cohen's κ > 0.5). CONCLUSION: The use of CS saves considerable imaging time while allowing to increase spatial resolution in routine clinical brain MRI without loss in image quality.


Subject(s)
Brain Diseases/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...