Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36366544

ABSTRACT

Seasonal influenza is a primary public health burden in the USA and globally. Annual vaccination programs are designed on the basis of circulating influenza viral strains. However, the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among individuals. A number of factors are known to influence vaccination effectiveness including age, sex, and comorbidities. Here, we sought to determine whether whole blood gene expression profiling prior to vaccination is informative about pre-existing immunological status and the immunological response to vaccine. We performed whole transcriptome analysis using RNA sequencing (RNAseq) of whole blood samples obtained prior to vaccination from 275 participants enrolled in an annual influenza vaccine trial. Serological status prior to vaccination and 28 days following vaccination was assessed using the hemagglutination inhibition assay (HAI) to define baseline immune status and the response to vaccination. We find evidence that genes with immunological functions are increased in expression in individuals with higher pre-existing immunity and in those individuals who mount a greater response to vaccination. Using a random forest model, we find that this set of genes can be used to predict vaccine response with a performance similar to a model that incorporates physiological and prior vaccination status alone. A model using both gene expression and physiological factors has the greatest predictive power demonstrating the potential utility of molecular profiling for enhancing prediction of vaccine response. Moreover, expression of genes that are associated with enhanced vaccination response may point to additional biological pathways that contribute to mounting a robust immunological response to the seasonal influenza vaccine.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Body Mass Index , Antibodies, Viral , Vaccination , Hemagglutination Inhibition Tests , Seasons , Gene Expression
2.
J Virol ; 96(4): e0183221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935439

ABSTRACT

Segmentation of viral genomes provides the potential for genetic exchange within coinfected cells. However, for this potential to be realized, coinfecting genomes must mix during the viral life cycle. The efficiency of reassortment, in turn, dictates its potential to drive evolution. The opportunity for mixing within coinfected cells may vary greatly across virus families, such that the evolutionary implications of genome segmentation differ as a result of core features of the viral life cycle. To investigate the relationship between viral replication compartments and genetic exchange, we quantified reassortment in mammalian orthoreovirus (reovirus). Reoviruses carry a 10-segmented, double-stranded RNA genome, which is replicated within proteinaceous structures termed inclusion bodies. We hypothesized that inclusions impose a barrier to reassortment. We quantified reassortment between wild-type (wt) and variant (var) reoviruses that differ by one nucleotide per segment. Studies of wt/var systems in both T1L and T3D backgrounds revealed frequent reassortment without bias toward particular genotypes. However, reassortment was more efficient in the T3D serotype. Since T1L and T3D viruses exhibit different inclusion body morphologies, we tested the impact of this phenotype on reassortment. In both serotypes, reassortment levels did not differ by inclusion morphology. Reasoning that the merging of viral inclusions may be critical for genome mixing, we then tested the effect of blocking merging. Reassortment proceeded efficiently even under these conditions. Our findings indicate that reovirus reassortment is highly efficient despite the localization of many viral processes to inclusion bodies, and that the robustness of this genetic exchange is independent of inclusion body structure and fusion. IMPORTANCE Quantification of reassortment in diverse viral systems is critical to elucidate the implications of genome segmentation for viral evolution. In principle, genome segmentation offers a facile means of genetic exchange between coinfecting viruses. In practice, there may be physical barriers within the cell that limit the mixing of viral genomes. Here, we tested the hypothesis that localization of the various stages of the mammalian orthoreovirus life cycle within cytoplasmic inclusion bodies compartmentalizes viral replication and limits genetic exchange. Contrary to this hypothesis, our data indicate that reovirus reassortment occurs readily within coinfected cells and is not strongly affected by the structure or dynamics of viral inclusion bodies. We conclude that the potential for reassortment to contribute to reovirus evolution is high.


Subject(s)
Orthoreovirus, Mammalian/genetics , Reassortant Viruses/genetics , Animals , Cell Line , Genome, Viral/genetics , Genotype , Inclusion Bodies, Viral/ultrastructure , Mice , Microtubules/metabolism , Serogroup , Virus Replication
3.
J Virol Methods ; 280: 113878, 2020 06.
Article in English | MEDLINE | ID: mdl-32353455

ABSTRACT

Reassortment of segmented viruses can be an important source of genetic diversity underlying viral evolution and emergence. Methods for the quantification of reassortment have been described but are often cumbersome and best suited for the analysis of reassortment between highly divergent parental strains. While it is useful to understand the potential of divergent parents to reassort, outcomes of such heterologous reassortment are driven by differential selection acting on the progeny and are typically strain specific. To quantify reassortment robustly, a system free of differential selection is needed. We have generated such a system for influenza A virus and for mammalian orthoreovirus by constructing well-matched parental viruses carrying small genetic tags. The method utilizes high-resolution melt technology for the identification of reassortant viruses. Ease of sample preparation and data analysis enables streamlined genotyping of a large number of virus clones. The method described here thereby allows quantification of the efficiency of reassortment and can be applied to diverse segmented viruses.


Subject(s)
Influenza A virus/genetics , Orthoreovirus, Mammalian/genetics , Reassortant Viruses/genetics , Recombination, Genetic , Animals , Cell Line , Flow Cytometry , Genetic Markers , Genetic Variation , Genome, Viral/genetics , Genotype , High-Throughput Nucleotide Sequencing , Humans , Mutation , Sequence Analysis, RNA
4.
PLoS Pathog ; 15(8): e1007892, 2019 08.
Article in English | MEDLINE | ID: mdl-31415678

ABSTRACT

The M segment of the 2009 pandemic influenza A virus (IAV) has been implicated in its emergence into human populations. To elucidate the genetic contributions of the M segment to host adaptation, and the underlying mechanisms, we examined a panel of isogenic viruses that carry avian- or human-derived M segments. Avian, but not human, M segments restricted viral growth and transmission in mammalian model systems, and the restricted growth correlated with increased expression of M2 relative to M1. M2 overexpression was associated with intracellular accumulation of autophagosomes, which was alleviated by interference of the viral proton channel activity by amantadine treatment. As M1 and M2 are expressed from the M mRNA through alternative splicing, we separated synonymous and non-synonymous changes that differentiate human and avian M segments and found that dysregulation of gene expression leading to M2 overexpression diminished replication, irrespective of amino acid composition of M1 or M2. Moreover, in spite of efficient replication, virus possessing a human M segment that expressed avian M2 protein at low level did not transmit efficiently. We conclude that (i) determinants of transmission reside in the IAV M2 protein, and that (ii) control of M segment gene expression is a critical aspect of IAV host adaptation needed to prevent M2-mediated dysregulation of vesicular homeostasis.


Subject(s)
Birds/virology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Viral Matrix Proteins/metabolism , Virus Replication , A549 Cells , Animals , Dogs , Female , Guinea Pigs , Humans , Influenza, Human/genetics , Influenza, Human/metabolism , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Species Specificity , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...