Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2403442121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968107

ABSTRACT

Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.


Subject(s)
Hepatocytes , Liver , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Plasmodium falciparum/growth & development , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Sporozoites/metabolism , Sporozoites/growth & development , Mice , Liver/parasitology , Liver/metabolism , Humans , Hepatocytes/parasitology , Hepatocytes/metabolism , Malaria, Falciparum/parasitology
2.
ChemMedChem ; 17(18): e202200306, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35906744

ABSTRACT

Plasmepsin X (PMX) is an aspartyl protease that processes proteins essential for Plasmodium parasites to invade and egress from host erythrocytes during the symptomatic asexual stage of malaria. PMX substrates possess a conserved cleavage region denoted by the consensus motif, SFhE (h=hydrophobic amino acid). Peptidomimetics reflecting the P3 -P1 positions of the consensus motif were designed and showed potent and selective inhibition of PMX. It was established that PMX prefers Phe in the P1 position, di-substitution at the ß-carbon of the P2 moiety and a hydrophobic P3 group which was supported by modelling of the peptidomimetics in complex with PMX. The peptidomimetics were shown to arrest asexual P. falciparum parasites at the schizont stage by impairing PMX substrate processing. Overall, the peptidomimetics described will assist in further understanding PMX substrate specificity and have the potential to act as a template for future antimalarial design.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Peptidomimetics , Amino Acids , Antimalarials/chemistry , Antimalarials/pharmacology , Aspartic Acid Endopeptidases , Carbon , Humans , Malaria, Falciparum/drug therapy , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Plasmodium falciparum/metabolism , Protease Inhibitors/chemistry , Protozoan Proteins
3.
Structure ; 30(7): 947-961.e6, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35460613

ABSTRACT

Plasmepsins IX (PMIX) and X (PMX) are essential aspartyl proteases for Plasmodium spp. egress, invasion, and development. WM4 and WM382 inhibit PMIX and PMX in Plasmodium falciparum and P. vivax. WM4 inhibits PMX, while WM382 is a dual inhibitor of PMIX and PMX. To understand their function, we identified protein substrates. Enzyme kinetic and structural analyses identified interactions responsible for drug specificity. PMIX and PMX have similar substrate specificity; however, there are distinct differences for peptide and protein substrates. Differences in WM4 and WM382 binding for PMIX and PMX map to variations in the S' region and engagement of the active site S3 pocket. Structures of PMX reveal interactions and mechanistic detail of drug binding important for development of clinical candidates against these targets.


Subject(s)
Aspartic Acid Endopeptidases , Plasmodium falciparum , Aspartic Acid Endopeptidases/chemistry , Kinetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Substrate Specificity
4.
Protein Sci ; 29(11): 2245-2258, 2020 11.
Article in English | MEDLINE | ID: mdl-32955133

ABSTRACT

PfSERA5, a significantly abundant protein present within the parasitophorous vacuole (PV) and essential for normal growth during the blood-stage life cycle of the malaria parasite Plasmodium falciparum, displays structural similarity to many other cysteine proteases. However, PfSERA5 does not exhibit any detectable protease activity and therefore the role of the PfSERA5 papain-like domain (PfSERA5E), thought to remain bound to its cognate prodomain, remains unknown. In this study, we present a revised structure of the central PfSERA5E domain at a resolution of 1.2 Å, and the first structure of the "zymogen" of this papain-like domain including its cognate prodomain (PfSERA5PE) to 2.2 Å resolution. PfSERA5PE is somewhat structurally similar to that of other known proenzymes, retaining the conserved overall folding and orientation of the prodomain through, and occluding, the archetypal papain-like catalytic triad "active-site" cleft, in the same reverse direction as conventional prodomains. Our findings are congruent with previously identified structures of PfSERA5E and of similar "zymogens" and provide a foundation for further investigation into the function of PfSERA5.


Subject(s)
Antigens, Protozoan/chemistry , Enzyme Precursors/chemistry , Plasmodium falciparum/chemistry , Antigens, Protozoan/genetics , Crystallography, X-Ray , Enzyme Precursors/genetics , Plasmodium falciparum/genetics , Protein Domains
5.
Nature ; 565(7737): 118-121, 2019 01.
Article in English | MEDLINE | ID: mdl-30542156

ABSTRACT

Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.


Subject(s)
Antigens, Protozoan/ultrastructure , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Plasmodium falciparum , Protozoan Proteins/ultrastructure , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line, Tumor , Drosophila , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/parasitology , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Plasmodium falciparum/chemistry , Plasmodium falciparum/pathogenicity , Plasmodium falciparum/ultrastructure , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
6.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29784862

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLß domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLß3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLß3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLß3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLß sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLß domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Biomarkers/blood , Malaria, Falciparum/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/genetics , Child, Preschool , Endothelial Protein C Receptor/metabolism , Female , Follow-Up Studies , Genetic Variation , Humans , Incidence , Infant , Intercellular Adhesion Molecule-1/metabolism , Malaria, Falciparum/epidemiology , Malaria, Falciparum/pathology , Male , Papua New Guinea/epidemiology , Phylogeny , Protein Binding , Protein Domains/immunology , Protozoan Proteins/genetics , Risk Assessment
7.
Eur J Med Chem ; 154: 182-198, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29800827

ABSTRACT

Plasmepsin V is an aspartyl protease that plays a critical role in the export of proteins bearing the Plasmodium export element (PEXEL) motif (RxLxQ/E/D) to the infected host erythrocyte, and thus the survival of the malaria parasite. Previously, development of transition state PEXEL mimetic inhibitors of plasmepsin V have primarily focused on demonstrating the importance of the P3 Arg and P1 Leu in binding affinity and selectivity. Here, we investigate the importance of the P2 position by incorporating both natural and non-natural amino acids into this position and show disubstituted beta-carbon amino acids convey the greatest potency. Consequently, we show analogues with either cyclohexylglycine or phenylglycine in the P2 position are the most potent inhibitors of plasmepsin V that impair processing of the PEXEL motif in exported proteins resulting in death of P. falciparum asexual stage parasites.


Subject(s)
Amino Acids/pharmacology , Antimalarials/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Peptidomimetics/pharmacology , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Amino Acids/chemistry , Antimalarials/chemical synthesis , Antimalarials/chemistry , Aspartic Acid Endopeptidases/metabolism , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Plasmodium falciparum/enzymology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
8.
J Leukoc Biol ; 101(4): 913-925, 2017 04.
Article in English | MEDLINE | ID: mdl-27837017

ABSTRACT

Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunity , Malaria/immunology , Malaria/parasitology , Merozoites/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibody Formation/immunology , Cohort Studies , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Parasitemia/immunology , Parasitemia/parasitology , Young Adult
9.
BMC Med ; 14(1): 144, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658419

ABSTRACT

BACKGROUND: The polymorphic nature of many malaria vaccine candidates presents major challenges to achieving highly efficacious vaccines. Presently, there is very little knowledge on the prevalence and patterns of functional immune responses to polymorphic vaccine candidates in populations to guide vaccine design. A leading polymorphic vaccine candidate against blood-stage Plasmodium falciparum is apical membrane antigen 1 (AMA1), which is essential for erythrocyte invasion. The importance of AMA1 as a target of acquired human inhibitory antibodies, their allele specificity and prevalence in populations is unknown, but crucial for vaccine design. METHODS: P. falciparum lines expressing different AMA1 alleles were genetically engineered and used to quantify functional antibodies from two malaria-exposed populations of adults and children. The acquisition of AMA1 antibodies was also detected using enzyme-linked immunosorbent assay (ELISA) and competition ELISA (using different AMA1 alleles) from the same populations. RESULTS: We found that AMA1 was a major target of naturally acquired invasion-inhibitory antibodies that were highly prevalent in malaria-endemic populations and showed a high degree of allele specificity. Significantly, the prevalence of inhibitory antibodies to different alleles varied substantially within populations and between geographic locations. Inhibitory antibodies to three specific alleles were highly prevalent (FVO and W2mef in Papua New Guinea; FVO and XIE in Kenya), identifying them for potential vaccine inclusion. Measurement of antibodies by standard or competition ELISA was not strongly predictive of allele-specific inhibitory antibodies. The patterns of allele-specific functional antibody responses detected with our novel assays may indicate that acquired immunity is elicited towards serotypes that are prevalent in each geographic location. CONCLUSIONS: These findings provide new insights into the nature and acquisition of functional immunity to a polymorphic vaccine candidate and strategies to quantify functional immunity in populations to guide rational vaccine design.

10.
Bioorg Med Chem ; 24(9): 1993-2010, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27021426

ABSTRACT

The use of arginine isosteres is a known strategy to overcome poor membrane permeability commonly associated with peptides or peptidomimetics that possess this highly polar amino acid. Here, we apply this strategy to peptidomimetics that are potent inhibitors of the malarial protease, plasmepsin V, with the aim of enhancing their activity against Plasmodium parasites, and exploring the structure-activity relationship of the P3 arginine within the S3 pocket of plasmepsin V. Of the arginine isosteres trialled in the P3 position, we discovered that canavanine was the ideal and that this peptidomimetic potently inhibits plasmepsin V, efficiently blocks protein export and inhibits parasite growth. Structure studies of the peptidomimetics bound to plasmepsin V provided insight into the structural basis for the enzyme activity observed in vitro and provides further evidence why plasmepsin V is highly sensitive to substrate modification.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Peptidomimetics/chemistry , Plasmodium vivax/enzymology , Animals , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
11.
Nat Commun ; 7: 10470, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26832821

ABSTRACT

Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Amino Acid Motifs , Cell Membrane , Escherichia coli , Lopinavir/pharmacology , Plasmodium falciparum/genetics , Protein Binding , Protozoan Proteins/genetics
12.
Nat Struct Mol Biol ; 22(8): 590-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26214367

ABSTRACT

Plasmepsin V, an essential aspartyl protease of malaria parasites, has a key role in the export of effector proteins to parasite-infected erythrocytes. Consequently, it is an important drug target for the two most virulent malaria parasites of humans, Plasmodium falciparum and Plasmodium vivax. We developed a potent inhibitor of plasmepsin V, called WEHI-842, which directly mimics the Plasmodium export element (PEXEL). WEHI-842 inhibits recombinant plasmepsin V with a half-maximal inhibitory concentration of 0.2 nM, efficiently blocks protein export and inhibits parasite growth. We obtained the structure of P. vivax plasmepsin V in complex with WEHI-842 to 2.4-Å resolution, which provides an explanation for the strict requirements for substrate and inhibitor binding. The structure characterizes both a plant-like fold and a malaria-specific helix-turn-helix motif that are likely to be important in cleavage of effector substrates for export.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Membrane Proteins/metabolism , Protease Inhibitors/chemistry , Protozoan Proteins/chemistry , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Carbamates/chemistry , Carbamates/metabolism , Carbamates/pharmacology , Cell Line , Crystallography, X-Ray , Erythrocytes/drug effects , Erythrocytes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Immunoblotting , Membrane Proteins/genetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Oligopeptides/chemistry , Oligopeptides/metabolism , Oligopeptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium vivax/enzymology , Plasmodium vivax/genetics , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Protein Structure, Tertiary , Protein Transport/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sequence Homology, Amino Acid , Substrate Specificity , Surface Plasmon Resonance
13.
J Infect Dis ; 212(3): 406-15, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25646353

ABSTRACT

Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Antibodies, Protozoan/blood , Child , Child, Preschool , Cohort Studies , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Incidence , Kaplan-Meier Estimate , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Membrane Proteins/immunology , Papua New Guinea/epidemiology , Recombinant Proteins
14.
BMC Med ; 12: 183, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25319190

ABSTRACT

BACKGROUND: Polymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies. METHODS: We aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence. RESULTS: We found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis. CONCLUSIONS: Antigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Alleles , Antibodies, Protozoan/immunology , Antigenic Variation , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Humans , Kenya , Malaria Vaccines/genetics , Middle Aged , Papua New Guinea , Plasmodium falciparum/genetics , Polymorphism, Genetic
15.
PLoS Biol ; 12(7): e1001897, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24983235

ABSTRACT

The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Proteases/antagonists & inhibitors , Oligopeptides/pharmacology , Protozoan Proteins/antagonists & inhibitors , Sulfonamides/pharmacology , Endoplasmic Reticulum/metabolism , Erythrocytes/parasitology , Humans , Protein Transport/drug effects , Protozoan Proteins/metabolism
16.
J Biol Chem ; 289(37): 25655-69, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25074930

ABSTRACT

Plasmodium falciparum is the causative agent of the most severe form of malaria in humans. The merozoite, an extracellular stage of the parasite lifecycle, invades erythrocytes in which they develop. The most abundant protein on the surface of merozoites is merozoite surface protein 1 (MSP1), which consists of four processed fragments. Studies indicate that MSP1 interacts with other peripheral merozoite surface proteins to form a large complex. Successful invasion of merozoites into host erythrocytes is dependent on this protein complex; however, the identity of all components and its function remain largely unknown. We have shown that the peripheral merozoite surface proteins MSPDBL1 and MSPDBL2 are part of the large MSP1 complex. Using surface plasmon resonance, we determined the binding affinities of MSPDBL1 and MSPDBL2 to MSP1 to be in the range of 2-4 × 10(-7) m. Both proteins bound to three of the four proteolytically cleaved fragments of MSP1 (p42, p38, and p83). In addition, MSPDBL1 and MSPDBL2, but not MSP1, bound directly to human erythrocytes. This demonstrates that the MSP1 complex acts as a platform for display of MSPDBL1 and MSPDBL2 on the merozoite surface for binding to receptors on the erythrocyte and invasion.


Subject(s)
Malaria/metabolism , Merozoite Surface Protein 1/metabolism , Merozoites/chemistry , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Erythrocytes/chemistry , Erythrocytes/parasitology , Humans , Malaria/parasitology , Malaria/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Merozoite Surface Protein 1/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Plasmodium falciparum/pathogenicity , Protein Binding
17.
Biochim Biophys Acta ; 1840(9): 2765-75, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24769454

ABSTRACT

BACKGROUND: Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site. METHODS: In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential. RESULTS: The final proteolytic step of PfSERA5 involves removal of a C-terminal ~6kDa fragment that results in the generation of a catalytically active ~50kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~6kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5. CONCLUSIONS: Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress. GENERAL SIGNIFICANCE: These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~6kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.


Subject(s)
Antigens, Protozoan/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/enzymology , Plasmodium falciparum/enzymology , Proteolysis , Antigens, Protozoan/genetics , Erythrocytes/metabolism , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Peptides/chemistry , Peptides/pharmacology , Plasmodium falciparum/genetics , Protein Structure, Tertiary
18.
Infect Immun ; 82(3): 924-36, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24218484

ABSTRACT

Plasmodium falciparum causes malaria disease during the asexual blood stages of infection when merozoites invade erythrocytes and replicate. Merozoite surface proteins (MSPs) are proposed to play a role in the initial binding of merozoites to erythrocytes, but precise roles remain undefined. Based on electron microscopy studies of invading Plasmodium merozoites, it is proposed that the majority of MSPs are cleaved and shed from the surface during invasion, perhaps to release receptor-ligand interactions. In this study, we demonstrate that there is not universal cleavage of MSPs during invasion. Instead, there is sequential and coordinated cleavage and shedding of proteins, indicating a diversity of roles for surface proteins during and after invasion. While MSP1 and peripheral surface proteins such as MSP3, MSP7, serine repeat antigen 4 (SERA4), and SERA5 are cleaved and shed at the tight junction between the invading merozoite and erythrocyte, the glycosylphosphatidylinositol (GPI)-anchored proteins MSP2 and MSP4 are carried into the erythrocyte without detectable processing. Following invasion, MSP2 rapidly degrades within 10 min, whereas MSP4 is maintained for hours. This suggests that while some proteins that are shed upon invasion may have roles in initial contact steps, others function during invasion and are then rapidly degraded, whereas others are internalized for roles during intraerythrocytic development. Interestingly, anti-MSP2 antibodies did not inhibit invasion and instead were carried into erythrocytes and maintained for approximately 20 h without inhibiting parasite development. These findings provide new insights into the mechanisms of invasion and knowledge to advance the development of new drugs and vaccines against malaria.


Subject(s)
Erythrocytes/metabolism , Malaria, Falciparum/metabolism , Membrane Proteins/metabolism , Merozoites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antibodies, Protozoan/metabolism , Antigens, Protozoan/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology
19.
PLoS One ; 8(9): e72504, 2013.
Article in English | MEDLINE | ID: mdl-24039774

ABSTRACT

BACKGROUND: A highly effective vaccine against Plasmodium falciparum malaria should induce potent, strain transcending immunity that broadly protects against the diverse population of parasites circulating globally. We aimed to identify vaccine candidates that fulfill the criteria. METHODS: We have measured growth inhibitory activity of antibodies raised to a range of antigens to identify those that can efficiently block merozoite invasion for geographically diverse strains of P. falciparum. RESULTS: This has shown that the conserved Region III-V, of the P. falciparum erythrocyte-binding antigen (EBA)-175 was able to induce antibodies that potently inhibit merozoite invasion across diverse parasite strains, including those reliant on invasion pathways independent of EBA-175 function. Additionally, the conserved RIII-V domain of EBA-140 also induced antibodies with strong in vitro parasite growth inhibitory activity. CONCLUSION: We identify an alternative, highly conserved region (RIV-V) of EBA-175, present in all EBA proteins, that is the target of potent, strain transcending neutralizing antibodies, that represents a strong candidate for development as a component in a malaria vaccine.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccination , Amino Acid Sequence , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Protozoan/pharmacology , Antigens, Protozoan/chemistry , Conserved Sequence , Epitope Mapping , Host-Parasite Interactions/immunology , Humans , Immunoglobulin G/blood , Inhibitory Concentration 50 , Malaria Vaccines/immunology , Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Rabbits , Species Specificity
20.
J Immunol ; 191(2): 795-809, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23776179

ABSTRACT

The development of effective malaria vaccines and immune biomarkers of malaria is a high priority for malaria control and elimination. Ags expressed by merozoites of Plasmodium falciparum are likely to be important targets of human immunity and are promising vaccine candidates, but very few Ags have been studied. We developed an approach to assess Ab responses to a comprehensive repertoire of merozoite proteins and investigate whether they are targets of protective Abs. We expressed 91 recombinant proteins, located on the merozoite surface or within invasion organelles, and screened them for quality and reactivity to human Abs. Subsequently, Abs to 46 proteins were studied in a longitudinal cohort of 206 Papua New Guinean children to define Ab acquisition and associations with protective immunity. Ab responses were higher among older children and those with active parasitemia. High-level Ab responses to rhoptry and microneme proteins that function in erythrocyte invasion were identified as being most strongly associated with protective immunity compared with other Ags. Additionally, Abs to new or understudied Ags were more strongly associated with protection than were Abs to current vaccine candidates that have progressed to phase 1 or 2 vaccine trials. Combinations of Ab responses were identified that were more strongly associated with protective immunity than responses to their single-Ag components. This study identifies Ags that are likely to be key targets of protective human immunity and facilitates the prioritization of Ags for further evaluation as vaccine candidates and/or for use as biomarkers of immunity in malaria surveillance and control.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Merozoites/immunology , Plasmodium falciparum/immunology , Adolescent , Antigens, Protozoan/immunology , Biomarkers/blood , Child , Child, Preschool , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Parasitemia/immunology , Protozoan Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL