Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Crit Care Med ; 26(8): 1414-8, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9710102

ABSTRACT

OBJECTIVE: To determine whether endotoxin-stimulated alveolar macrophages would attract neutrophils and whether exogenous surfactant treatment would modulate this chemoattraction. DESIGN: Alveolar macrophages were harvested from bronchoalveolar lavage fluid and neutrophils from the blood of anesthetized guinea pigs. SUBJECTS: Hartley guinea pigs. INTERVENTIONS: Alveolar macrophages were suspended in RPMI 1640 and stimulated with 1 microg/mL of lipopolysaccharide (LPS), the supernatant removed and the alveolar macrophages were incubated in either RPMI or RPMI with surfactant at two different doses (292 microg/mL or 875 microg/mL) for 16 hrs. MEASUREMENTS AND MAIN RESULTS: The supernatant was extracted from the alveolar macrophages and placed in a chemotaxis plate and the migration of neutrophils was measured. Chemotaxis of all cell types to be tested was measured by a change of absorbance on a microplate reader set at 492 nm. Results were compared with alveolar macrophages not stimulated with LPS, RPMI alone, and N formyl-methionyl-leucyl-phenylalanine (FMLP). The supernatant of the stimulated alveolar macrophages increased neutrophil chemotaxis as compared with unstimulated alveolar macrophages, and RPMI (p < .05). Surfactant treatment with 292 microg/mL significantly decreased LPS-stimulated alveolar macrophages induced neutrophil chemotaxis. Treatment with 875 microg/mL of surfactant did not alter neutrophil chemotaxis. CONCLUSIONS: Alveolar macrophages stimulation with LPS increased the chemotaxis of neutrophils. Treatment with surfactant at a concentration of 875 microg/mL did not alter neutrophil migration; however, treatment with 292 microg/mL significantly decreased neutrophil chemotaxis suggesting that at low concentrations, surfactant inhibits chemokine release and may reduce pulmonary neutrophil sequestration in vivo.


Subject(s)
Escherichia coli , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/physiology , Neutrophils/physiology , Surface-Active Agents/pharmacology , Animals , Chemotaxis, Leukocyte/physiology , Guinea Pigs , Macrophages, Alveolar/drug effects , Male , N-Formylmethionine Leucyl-Phenylalanine/pharmacology
2.
Eur J Vasc Endovasc Surg ; 16(1): 36-42, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9715714

ABSTRACT

OBJECTIVES: To investigate the role of lower extremity ischaemia in acute lung injury with special emphasis on the role of tumour necrosis factor (TNF) and nitric oxide (NO) as mediators of neutrophil (PMN) chemotaxis in the lung. DESIGN: Prospective randomised study. MATERIALS AND METHODS: Sprague-Dawley rats were randomized into four groups: group 1 (x-clmap): aorta clamped just above the bifurcation for 3 h; group 2 (AG): 50 mg/kg aminoguanidine, a specific inducible NO synthase (iNOS) inhibitor, was administered prior to aortic occlusion; group 3 (Steroids): 1 mg/kg dexamethasone was administered prior to aortic occlusion; and group 4 (TNFbp): 2 mg/kg TNFbp, a PEGylated dimeric form of the high affinity TNF receptor I (R1) was administered prior to aortic occlusion to block TNF action. Groups 2, 3 and 4 were subjected to the same ischaemia time as group 1. NO concentration in the exhaled gas (ENO) was measured in 30 min intervals. At the end of the 3 h ischaemia, one lung was excised and fixed for routine histological evaluation, and the other underwent bronchoalveolar lavage (BAL). PMN chemotaxis towards the BAL fluid was then measured using the blindwell technique. RESULTS: ENO in group 1 increased from 0.9 +/- 0.3 ppb at baseline, to 41.3 +/- 9.2 ppb at the end of ischaemia. Animals in this group exhibited significant lung inflammation. Aminoguanidine, dexamethasone and TNFbp blocked NO production (peak ENO values of 7.2 +/- 1.9, 12.6 +/- 1.3 and 8.9 +/- 1.7 ppb for groups 2, 3 and 4 respectively), decreased PMN chemotaxis and sequestration in the lung, and attenuated lung inflammation. CONCLUSIONS: Acute lung injury resulting from distal aortic occlusion starts during ischaemia. TNF and NO blockade decrease PMN chemotaxis and sequestration and attenuate the lung injury process.


Subject(s)
Aorta , Chemotaxis/physiology , Ischemia/physiopathology , Lung/pathology , Neutrophils , Nitric Oxide/physiology , Tumor Necrosis Factor-alpha/physiology , Analysis of Variance , Animals , Anti-Inflammatory Agents/pharmacology , Aorta/physiology , Constriction , Dexamethasone/pharmacology , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Hindlimb/blood supply , Humans , Inflammation , Ischemia/etiology , Luminescent Measurements , Male , Neutrophils/physiology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase Type II , Prospective Studies , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Tumor Necrosis Factor/physiology , Time Factors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL