Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607916

ABSTRACT

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Subject(s)
Insulin Secretion , Insulin-Secreting Cells , L-Lactate Dehydrogenase , Lactic Acid , Humans , Insulin-Secreting Cells/metabolism , Animals , L-Lactate Dehydrogenase/metabolism , Mice , Lactic Acid/metabolism , Glucose/metabolism , Insulin/metabolism , Isoenzymes/metabolism , Citric Acid Cycle , Mice, Inbred C57BL , Male
2.
NMR Biomed ; : e5117, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356104

ABSTRACT

It has been shown using proton magnetic resonance spectroscopy (1 H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2 :CH3 ) and IMCL concentration (measured as CH3 ), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.

3.
Nutrients ; 16(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398849

ABSTRACT

We propose a novel method for assessing metabolic flexibility (MF) through indirect calorimetry. A total of twenty healthy volunteers (10 females; 10 males) aged 45-65 were categorized into a Low-Intensity activity group (LI, 0-1 session of 1 h per week) and a High-Intensity activity group (HI, 5-6 sessions of 2 h per week). Volunteers underwent a stepwise exercise test on a cycle ergometer, connected to a calorimeter, to examine respiratory gas exchange to evaluate peak fatty acid Oxidation (PFO) and peak carbohydrate oxidation (PCO). Circulating peroxisome proliferator-activated receptor α (PPARα) biomarkers, docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratio and N-oleoylethanolamine (OEA), and the endocannabinoid- 2-arachidonoylglycerol (2-AG), were evaluated. We developed two MF parameters: the MF index (MFI), calculated by the product of PFO normalized per kg of fat-free mass (FFM) and the percentage of VO2max at PFO, and the peak energy substrates' oxidation (PESO), computed by summing the kilocalories from the PFO and PCO, normalized per kg FFM. The MFI and PESO were significantly different between the HI and LI groups, showing strong correlations with the circulating bioactive substances. Higher DHA/EPA ratio (p ≤ 0.05) and OEA (p ≤ 0.01), but lower 2-AG levels (p ≤ 0.01) were found in the HI group. These new parameters successfully established a functional link between MF and the balance of PPARα/endocannabinoid systems.


Subject(s)
Endocannabinoids , PPAR alpha , Male , Middle Aged , Female , Humans , Calorimetry, Indirect , Oxidation-Reduction , Docosahexaenoic Acids , Eicosapentaenoic Acid
4.
Cell Metab ; 35(11): 1887-1896.e5, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37909034

ABSTRACT

The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma ß-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma ß-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Humans , Lipogenesis/genetics , 3-Hydroxybutyric Acid/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Mitochondria/metabolism , Genetic Predisposition to Disease
5.
Atherosclerosis ; : 117237, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37633797

ABSTRACT

The prevalence of metabolic diseases, including type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing. Although invariably associated with obesity, the importance of fat deposition in non-adipose tissue organs has yet to be fully explored. Pathological ectopic fat deposition within the liver (known as (MASLD)) has been suggested to underlie the development of T2DM and is now emerging as an independent risk factor for cardiovascular disease (CVD). The process of hepatic de novo lipogenesis (DNL), that is the synthesis of fatty acids from non-lipid precursors (e.g. glucose), has received much attention as it sits at the intersect of hepatic glucose and fatty acid handling. An upregulation of the DNL pathway has been suggested to be central in the development of metabolic diseases (including MASLD, insulin resistance, and T2DM). Here we review the evidence to determine if hepatic DNL may play a role in the development of MASLD and T2DM and therefore underlie an increased risk of CVD.

6.
Am J Physiol Cell Physiol ; 325(5): C1158-C1177, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37642240

ABSTRACT

Circadian rhythms are endogenous oscillations with approximately a 24-h period that allow organisms to anticipate the change between day and night. Disruptions that desynchronize or misalign circadian rhythms are associated with an increased risk of cardiometabolic disease. This review focuses on the liver circadian clock as relevant to the risk of developing metabolic diseases including nonalcoholic fatty liver disease (NAFLD), insulin resistance, and type 2 diabetes (T2D). Many liver functions exhibit rhythmicity. Approximately 40% of the hepatic transcriptome exhibits 24-h rhythms, along with rhythms in protein levels, posttranslational modification, and various metabolites. The liver circadian clock is critical for maintaining glucose and lipid homeostasis. Most of the attention in the metabolic field has been directed toward diet, exercise, and rather little to modifiable risks due to circadian misalignment or disruption. Therefore, the aim of this review is to systematically analyze the various approaches that study liver circadian pathways, targeting metabolic liver diseases, such as diabetes, nonalcoholic fatty liver disease, using human, rodent, and cell biology models.NEW & NOTEWORTHY Over the past decade, there has been an increased interest in understanding the intricate relationship between circadian rhythm and liver metabolism. In this review, we have systematically searched the literature to analyze the various experimental approaches utilizing human, rodent, and in vitro cellular approaches to dissect the link between liver circadian rhythms and metabolic disease.


Subject(s)
Circadian Clocks , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Humans , Circadian Rhythm/physiology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Rodentia
7.
Gut ; 72(8): 1607-1619, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37286229

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) represents a major public health concern and is associated with a substantial global burden of liver-related and cardiovascular-related morbidity and mortality. High total energy intake coupled with unhealthy consumption of ultra-processed foods and saturated fats have long been regarded as major dietary drivers of NAFLD. However, there is an accumulating body of evidence demonstrating that the timing of energy intake across a the day is also an important determinant of individual risk for NAFLD and associated metabolic conditions. This review summarises the available observational and epidemiological data describing associations between eating patterns and metabolic disease, including the negative effects of irregular meal patterns, skipping breakfast and night-time eating on liver health. We suggest that that these harmful behaviours deserve greater consideration in the risk stratification and management of patients with NAFLD particularly in a 24-hour society with continuous availability of food and with up to 20% of the population now engaged in shiftwork with mistimed eating patterns. We also draw on studies reporting the liver-specific impact of Ramadan, which represents a unique real-world opportunity to explore the physiological impact of fasting. By highlighting data from preclinical and pilot human studies, we present a further biological rationale for manipulating timing of energy intake to improve metabolic health and discuss how this may be mediated through restoration of natural circadian rhythms. Lastly, we comprehensively review the landscape of human trials of intermittent fasting and time-restricted eating in metabolic disease and offer a look to the future about how these dietary strategies may benefit patients with NAFLD and non-alcoholic steatohepatitis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Intermittent Fasting , Energy Intake , Diet , Feeding Behavior , Eating
8.
JHEP Rep ; 5(5): 100693, 2023 May.
Article in English | MEDLINE | ID: mdl-37122688

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods: Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results: We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions: Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications: We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.

9.
Metabolism ; 144: 155563, 2023 07.
Article in English | MEDLINE | ID: mdl-37088121

ABSTRACT

BACKGROUND AND AIM: Enhanced hepatic de novo lipogenesis (DNL) has been proposed as an underlying mechanism for the development of NAFLD and insulin resistance. Max-like protein factor X (MLX) acts as a heterodimer binding partner for glucose sensing transcription factors and inhibition of MLX or downstream targets has been shown to alleviate intrahepatic triglyceride (IHTG) accumulation in mice. However, its effect on insulin sensitivity remains unclear. As human data is lacking, the aim of the present work was to investigate the role of MLX in regulating lipid and glucose metabolism in primary human hepatocytes (PHH) and in healthy participants with and without MLX polymorphisms. METHODS: PHH were transfected with non-targeting or MLX siRNA to assess the effect of MLX knockdown on lipid and glucose metabolism, insulin signalling and the hepatocellular transcriptome. A targeted association analysis on imputed genotype data for MLX on healthy individuals was undertaken to assess associations between specific MLX SNPs (rs665268, rs632758 and rs1474040), plasma biochemistry, IHTG content, DNL and gluconeogenesis. RESULTS: MLX knockdown in PHH altered lipid metabolism (decreased DNL (p < 0.05), increased fatty acid oxidation and ketogenesis (p < 0.05), and reduced lipid accumulation (p < 0.001)). Additionally, MLX knockdown increased glycolysis, lactate secretion and glucose production (p < 0.001) and insulin-stimulated pAKT levels (p < 0.01) as assessed by transcriptomic, steady-state and dynamic measurements. Consistent with the in vitro data, individuals with the rs1474040-A and rs632758-C variants had lower fasting plasma insulin (p < 0.05 and p < 0.01, respectively) and TG (p < 0.05 and p < 0.01, respectively). Although there was no difference in IHTG or gluconeogenesis, individuals with rs632758 SNP had notably lower hepatic DNL (p < 0.01). CONCLUSION: We have demonstrated using human in vitro and in vivo models that MLX inhibition favored lipid catabolism over anabolism and increased glucose production, despite increased glycolysis and phosphorylation of Akt, suggesting a metabolic mechanism that involves futile cycling.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Glucose/metabolism , Transcription Factors/metabolism , Gluconeogenesis/genetics , Insulin/metabolism , Lipid Metabolism/genetics , Lipogenesis/physiology , Insulin Resistance/genetics , Triglycerides/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
10.
Curr Opin Clin Nutr Metab Care ; 26(2): 65-71, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36892956

ABSTRACT

PURPOSE OF REVIEW: De novo lipogenesis (DNL) is a metabolic process occurring mainly within the liver, in humans. Insulin is a primary signal for promoting DNL; thus, nutritional state is a key determinant for upregulation of the pathway. However, the effects of dietary macronutrient composition on hepatic DNL remain unclear. Nor is it clear if a nutrition-induced increase in DNL results in accumulation of intra-hepatic triglyceride (IHTG); a mechanism often proposed for pathological IHTG. Here, we review the latest evidence surrounding the nutritional regulation of hepatic DNL. RECENT FINDINGS: The role of carbohydrate intake on hepatic DNL regulation has been well studied, with only limited data on the effects of fats and proteins. Overall, increasing carbohydrate intake typically results in an upregulation of DNL, with fructose being more lipogenic than glucose. For fat, it appears that an increased intake of n-3 polyunsaturated fatty acids downregulates DNL, whilst, in contrast, an increased dietary protein intake may upregulate DNL. SUMMARY: Although DNL is upregulated with high-carbohydrate or mixed-macronutrient meal consumption, the effects of fat and protein remain unclear. Additionally, the effects of different phenotypes (including sex, age, ethnicity, and menopause status) in combination with different diets (enriched in different macronutrients) on hepatic DNL requires elucidation.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Female , Humans , Dietary Proteins/pharmacology , Dietary Proteins/metabolism , Dietary Carbohydrates/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
11.
Adipocyte ; 12(1): 2179339, 2023 12.
Article in English | MEDLINE | ID: mdl-36763512

ABSTRACT

While there is no standardized protocol for the differentiation of human adipocytes in culture, common themes exist in the use of supra-physiological glucose and hormone concentrations, and an absence of exogenous fatty acids. These factors can have detrimental effects on some aspects of adipogenesis and adipocyte function. Here, we present methods for modifying the adipogenic differentiation protocol to overcome impaired glucose uptake and insulin signalling in human adipose-derived stem cell lines derived from the stromal vascular fraction of abdominal and gluteal subcutaneous adipose tissue. By reducing the length of exposure to adipogenic hormones, in combination with a physiological glucose concentration (5 mM), and the provision of exogenous fatty acids (reflecting typical dietary fatty acids), we were able to restore early insulin signalling events and glucose uptake, which were impaired by extended use of hormones and a high glucose concentration, respectively. Furthermore, the addition of exogenous fatty acids greatly increased the storage of triglycerides and removed the artificial demand to synthesize all fatty acids by de novo lipogenesis. Thus, modifying the adipogenic cocktail can enhance functional aspects of human adipocytes in vitro and is an important variable to consider prior to in vitro investigations into adipocyte biology.


Subject(s)
Adipogenesis , Insulin , Humans , Adipogenesis/physiology , Insulin/metabolism , Cell Differentiation , Cell Culture Techniques , Fatty Acids , Glucose , Adipose Tissue/metabolism
12.
Nat Commun ; 14(1): 1025, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823106

ABSTRACT

Glucocorticoids prescribed to limit inflammation, have significant adverse effects. As 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) regenerates active glucocorticoid, we investigated whether 11ß-HSD1 inhibition with AZD4017 could mitigate adverse glucocorticoid effects without compromising their anti-inflammatory actions. We conducted a proof-of-concept, randomized, double-blind, placebo-controlled study at Research Unit, Churchill Hospital, Oxford, UK (NCT03111810). 32 healthy male volunteers were randomized to AZD4017 or placebo, alongside prednisolone treatment. Although the primary endpoint of the study (change in glucose disposal during a two-step hyperinsulinemic, normoglycemic clamp) wasn't met, hepatic insulin sensitivity worsened in the placebo-treated but not in the AZD4017-treated group. Protective effects of AZD4017 on markers of lipid metabolism and bone turnover were observed. Night-time blood pressure was higher in the placebo-treated but not in the AZD4017-treated group. Urinary (5aTHF+THF)/THE ratio was lower in the AZD4017-treated but remained the same in the placebo-treated group. Most anti-inflammatory actions of prednisolone persisted with AZD4017 co-treatment. Four adverse events were reported with AZD4017 and no serious adverse events. Here we show that co-administration of AZD4017 with prednisolone in men is a potential strategy to limit adverse glucocorticoid effects.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Anti-Inflammatory Agents , Prednisolone , Humans , Male , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Anti-Inflammatory Agents/adverse effects , Glucocorticoids/adverse effects , Inflammation/drug therapy , Prednisolone/adverse effects
13.
Magn Reson Med ; 89(4): 1314-1322, 2023 04.
Article in English | MEDLINE | ID: mdl-36573435

ABSTRACT

PURPOSE: Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD: Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS: There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION: Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.


Subject(s)
Acetylcarnitine , Carnitine , Adult , Humans , Reproducibility of Results , Muscle, Skeletal , Liver/diagnostic imaging , Dietary Supplements , Lipids
14.
Physiol Rep ; 10(20): e15463, 2022 10.
Article in English | MEDLINE | ID: mdl-36301719

ABSTRACT

Pathological accumulation of intrahepatic triglyceride underpins the early stages of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and cancer of the liver. Studies in humans suggest that consumption of a diet enriched in saturated compared to unsaturated fatty acids (FAs), is more detrimental to liver fat accumulation and metabolism. However, the reasons for the divergence remain unclear and physiologically-relevant cellular models are required. Therefore, the aims of this study were to investigate the effect of modifying media composition, concentration, and treatment frequency of sugars, FAs and insulin on intrahepatocellular triglyceride content and intracellular glucose, FA and circadian function. Huh7 cells were treated with 2% human serum and a combination of sugars and FAs (low fat low sugar [LFLS], high fat low sugar [HFLS], or high fat high sugar [HFHS]) enriched in either unsaturated (OPLA) or saturated (POLA) FAs for 2, 4, or 7 days with a daily or alternating treatment regime. Stable isotope tracers were utilized to investigate basal and/or insulin-responsive changes in hepatocyte metabolism in response to different treatment regimes. Cell viability, media biochemistry, intracellular metabolism, and circadian biology were quantified. The FA composition of the media (OPLA vs. POLA) did not influence cell viability or intracellular triglyceride content in hepatocytes. In contrast, POLA-treated cells had lower FA oxidation and media acetate, and with higher FA concentrations, displayed lower intracellular glycogen content and diminished insulin stimulation of glycogenesis, compared to OPLA-treated cells. The addition of HFHS also had profound effects on circadian oscillation and gene expression. Cells treated daily with HFHS for at least 4 days resulted in a cellular model displaying characteristics of early stage NAFLD seen in humans. Repeated treatment for longer durations (≥7 days) may provide opportunities to investigate lipid and glucose metabolism in more severe stages of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Triglycerides/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Liver/metabolism , Glucose/metabolism , Insulin/metabolism , Fatty Acids/metabolism
15.
Curr Opin Clin Nutr Metab Care ; 25(4): 241-247, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35762159

ABSTRACT

PURPOSE OF REVIEW: Intrahepatic triglyceride (IHTG) content is determined by substrate flux to, fatty acid synthesis and partitioning within, and triglyceride disposal from the liver. Dysregulation of these processes may cause IHTG accumulation, potentially leading to nonalcoholic fatty liver disease. The aetiology of IHTG accumulation has not been fully elucidated; however, environmental factors and heritability are important. Here, we review recent evidence regarding the contribution of metabolic and genetic components of IHTG accumulation. RECENT FINDINGS: Obesity and insulin resistance are the primary metabolic drivers for IHTG accumulation. These risk factors have pronounced and seemingly overlapping effects on all processes involved in determining IHTG content. The strong and interchangeable associations between obesity, insulin resistance and IHTG make it challenging to determine their relative contributions. Genome-wide association studies have identified a growing list of single nucleotide polymorphisms associated with IHTG content and recent work has begun to elucidate their mechanistic effects. The mechanisms underlying metabolic and genetic drivers of IHTG appear to be distinct. SUMMARY: Both metabolic and genetic factors influence IHTG content by apparently distinct mechanisms. Further work is needed to determine metabolic and genetic interaction effects, which may lead to more personalized and potentially efficacious therapeutic interventions. The development of a comprehensive polygenic risk score for IHTG content may help facilitate this.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Genome-Wide Association Study , Glucose Clamp Technique , Humans , Insulin Resistance/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity/complications , Triglycerides/metabolism
16.
Physiol Rep ; 10(10): e15309, 2022 05.
Article in English | MEDLINE | ID: mdl-35614576

ABSTRACT

Elevating blood ketones may enhance exercise capacity and modulate adaptations to exercise training; however, these effects may depend on whether hyperketonemia is induced endogenously through dietary carbohydrate restriction, or exogenously through ketone supplementation. To determine this, we compared the effects of endogenously- and exogenously-induced hyperketonemia on exercise capacity and adaptation. Trained endurance athletes undertook 6 days of laboratory based cycling ("race") whilst following either: a carbohydrate-rich control diet (n = 7; CHO); a carbohydrate-rich diet + ketone drink four-times daily (n = 7; Ex Ket); or a ketogenic diet (n = 7; End Ket). Exercise capacity was measured daily, and adaptations in exercise metabolism, exercise physiology and postprandial insulin sensitivity (via an oral glucose tolerance test) were measured before and after dietary interventions. Urinary ß-hydroxybutyrate increased by ⁓150-fold and ⁓650-fold versus CHO with Ex Ket and End Ket, respectively. Exercise capacity was increased versus pre-intervention by ~5% on race day 1 with CHO (p < 0.05), by 6%-8% on days 1, 4, and 6 (all p < 0.05) with Ex Ket and decreased by 48%-57% on all race days (all p > 0.05) with End Ket. There was an ⁓3-fold increase in fat oxidation from pre- to post-intervention (p < 0.05) with End Ket and increased perceived exercise exertion (p < 0.05). No changes in exercise substrate metabolism occurred with Ex Ket, but participants had blunted postprandial insulin sensitivity (p < 0.05). Dietary carbohydrate restriction and ketone supplementation both induce hyperketonemia; however, these are distinct physiological conditions with contrasting effects on exercise capacity and adaptation to exercise training.


Subject(s)
Insulin Resistance , Adaptation, Physiological , Dietary Carbohydrates/pharmacology , Exercise , Humans , Ketones , Physical Endurance/physiology
17.
Metabol Open ; 14: 100177, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35313531

ABSTRACT

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods: Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results: Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions: These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.

18.
J Clin Endocrinol Metab ; 107(6): e2532-e2544, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35137184

ABSTRACT

CONTEXT: Genetic variants affecting the nuclear hormone receptor coactivator steroid receptor coactivator, SRC-1, have been identified in people with severe obesity and impair melanocortin signaling in cells and mice. As a result, obese patients with SRC-1 deficiency are being treated with a melanocortin 4 receptor agonist in clinical trials. OBJECTIVE: Here, our aim was to comprehensively describe and characterize the clinical phenotype of SRC-1 variant carriers to facilitate diagnosis and clinical management. METHODS: In genetic studies of 2462 people with severe obesity, we identified 23 rare heterozygous variants in SRC-1. We studied 29 adults and 18 children who were SRC-1 variant carriers and performed measurements of metabolic and endocrine function, liver imaging, and adipose tissue biopsies. Findings in adult SRC-1 variant carriers were compared to 30 age- and body mass index (BMI)-matched controls. RESULTS: The clinical spectrum of SRC-1 variant carriers included increased food intake in children, normal basal metabolic rate, multiple fractures with minimal trauma (40%), persistent diarrhea, partial thyroid hormone resistance, and menorrhagia. Compared to age-, sex-, and BMI-matched controls, adult SRC-1 variant carriers had more severe adipose tissue fibrosis (46.2% vs 7.1% respectively, P = .03) and a suggestion of increased liver fibrosis (5/13 cases vs 2/13 in controls, odds ratio = 3.4), although this was not statistically significant. CONCLUSION: SRC-1 variant carriers exhibit hyperphagia in childhood, severe obesity, and clinical features of partial hormone resistance. The presence of adipose tissue fibrosis and hepatic fibrosis in young patients suggests that close monitoring for the early development of obesity-associated metabolic complications is warranted.


Subject(s)
Nuclear Receptor Coactivator 1 , Obesity, Morbid , Female , Fibrosis , Humans , Male , Nuclear Receptor Coactivator 1/genetics , Obesity, Morbid/complications , Obesity, Morbid/genetics
19.
Eur J Endocrinol ; 186(3): 367-377, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35038311

ABSTRACT

OBJECTIVE: Metformin is a first-line pharmacotherapy in the treatment of type 2 diabetes, a condition closely associated with non-alcoholic fatty liver disease (NAFLD). Although metformin promotes weight loss and improves insulin sensitivity, its effect on intrahepatic triglyceride (IHTG) remains unclear. We investigated the effect of metformin on IHTG, hepatic de novo lipogenesis (DNL), and fatty acid (FA) oxidation in vivo in humans. DESIGN AND METHODS: Metabolic investigations, using stable-isotope tracers, were performed in ten insulin-resistant, overweight/obese human participants with NAFLD who were treatment naïve before and after 12 weeks of metformin treatment. The effect of metformin on markers of s.c. adipose tissue FA metabolism and function, along with the plasma metabolome, was investigated. RESULTS: Twelve weeks of treatment with metformin resulted in a significant reduction in body weight and improved insulin sensitivity, but IHTG content and FA oxidation remained unchanged. Metformin treatment was associated with a significant decrease in VLDL-triglyceride (TG) concentrations and a significant increase in the relative contribution of DNL-derived FAs to VLDL-TG. There were subtle and relatively few changes in s.c. adipose tissue FA metabolism and the plasma metabolome with metformin treatment. CONCLUSIONS: We demonstrate the mechanisms of action of metformin whereby it improves insulin sensitivity and promotes weight loss, without improvement in IHTG; these observations are partly explained through increased hepatic DNL and a lack of change in FA oxidation.


Subject(s)
Hypoglycemic Agents/therapeutic use , Insulin Resistance/physiology , Lipogenesis/physiology , Liver/metabolism , Metformin/therapeutic use , Triglycerides/metabolism , Adult , Body Weight/drug effects , Body Weight/physiology , Cohort Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Hypoglycemic Agents/pharmacology , Lipogenesis/drug effects , Liver/drug effects , Male , Metformin/pharmacology , Middle Aged , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Overweight/drug therapy , Overweight/metabolism
20.
J Intern Med ; 292(2): 296-307, 2022 08.
Article in English | MEDLINE | ID: mdl-34982494

ABSTRACT

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Subject(s)
Fatty Liver , Insulins , Sterol O-Acyltransferase , Animals , Cholesterol Esters/metabolism , Fatty Liver/metabolism , Glucose/metabolism , Insulins/metabolism , Lipoproteins, VLDL/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Triglycerides , Sterol O-Acyltransferase 2
SELECTION OF CITATIONS
SEARCH DETAIL
...