Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cells ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36497060

ABSTRACT

The main connection from cerebellum to cerebrum is formed by cerebellar nuclei axons that synapse in the thalamus. Apart from its role in coordinating sensorimotor integration in the adult brain, the cerebello-thalamic tract (CbT) has also been implicated in developmental disorders, such as autism spectrum disorders. Although the development of the cerebellum, thalamus and cerebral cortex have been studied, there is no detailed description of the ontogeny of the mammalian CbT. Here we investigated the development of the CbT at embryonic stages using transgenic Ntsr1-Cre/Ai14 mice and in utero electroporation of wild type mice. Wide-field, confocal and 3D light-sheet microscopy of immunohistochemical stainings showed that CbT fibers arrive in the prethalamus between E14.5 and E15.5, but only invade the thalamus after E16.5. We quantified the spread of CbT fibers throughout the various thalamic nuclei and found that at E17.5 and E18.5 the ventrolateral, ventromedial and parafascicular nuclei, but also the mediodorsal and posterior complex, become increasingly innervated. Several CbT fiber varicosities express vesicular glutamate transporter type 2 at E18.5, indicating cerebello-thalamic synapses. Our results provide the first quantitative data on the developing murine CbT, which provides guidance for future investigations of the impact that cerebellum has on thalamo-cortical networks during development.


Subject(s)
Thalamic Nuclei , Thalamus , Mice , Animals , Cerebellar Nuclei , Cerebellum , Mice, Transgenic , Mammals
2.
Cell Mol Life Sci ; 79(4): 197, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305155

ABSTRACT

Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.


Subject(s)
Cerebellar Nuclei , Epilepsy, Absence , Action Potentials/physiology , Animals , Epilepsy, Absence/genetics , Mice , Seizures/genetics , Signal Transduction
3.
Cells ; 10(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34685666

ABSTRACT

Purkinje cells (PCs) in the cerebellar cortex can be divided into at least two main subpopulations: one subpopulation that prominently expresses ZebrinII (Z+), and shows a relatively low simple spike firing rate, and another that hardly expresses ZebrinII (Z-) and shows higher baseline firing rates. Likewise, the complex spike responses of PCs, which are evoked by climbing fiber inputs and thus reflect the activity of the inferior olive (IO), show the same dichotomy. However, it is not known whether the target neurons of PCs in the cerebellar nuclei (CN) maintain this bimodal distribution. Electrophysiological recordings in awake adult mice show that the rate of action potential firing of CN neurons that receive input from Z+ PCs was consistently lower than that of CN neurons innervated by Z- PCs. Similar in vivo recordings in juvenile and adolescent mice indicated that the firing frequency of CN neurons correlates to the ZebrinII identity of the PC afferents in adult, but not postnatal stages. Finally, the spontaneous action potential firing pattern of adult CN neurons recorded in vitro revealed no significant differences in intrinsic pacemaking activity between ZebrinII identities. Our findings indicate that all three main components of the olivocerebellar loop, i.e., PCs, IO neurons and CN neurons, operate at a higher rate in the Z- modules.


Subject(s)
Cerebellar Nuclei/physiology , Neurons, Afferent/physiology , Purkinje Cells/physiology , Action Potentials/physiology , Aging/physiology , Animals , Biological Clocks , Dendrites/physiology , Mice, Inbred C57BL
4.
Cell Rep ; 36(12): 109721, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34551311

ABSTRACT

Cerebellar outputs take polysynaptic routes to reach the rest of the brain, impeding conventional tracing. Here, we quantify pathways between the cerebellum and forebrain by using transsynaptic tracing viruses and a whole-brain analysis pipeline. With retrograde tracing, we find that most descending paths originate from the somatomotor cortex. Anterograde tracing of ascending paths encompasses most thalamic nuclei, especially ventral posteromedial, lateral posterior, mediodorsal, and reticular nuclei. In the neocortex, sensorimotor regions contain the most labeled neurons, but we find higher densities in associative areas, including orbital, anterior cingulate, prelimbic, and infralimbic cortex. Patterns of ascending expression correlate with c-Fos expression after optogenetic inhibition of Purkinje cells. Our results reveal homologous networks linking single areas of the cerebellar cortex to diverse forebrain targets. We conclude that shared areas of the cerebellum are positioned to provide sensory-motor information to regions implicated in both movement and nonmotor function.


Subject(s)
Cerebellum/metabolism , Neural Pathways/physiology , Animals , Cerebral Cortex/metabolism , Female , Genetic Vectors/genetics , Genetic Vectors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Simplexvirus/genetics , Thalamic Nuclei/metabolism
5.
Brain Stimul ; 14(4): 861-872, 2021.
Article in English | MEDLINE | ID: mdl-34022430

ABSTRACT

BACKGROUND: Epileptic (absence) seizures in the cerebral cortex can be stopped by pharmacological and optogenetic stimulation of the cerebellar nuclei (CN) neurons that innervate the thalamus. However, it is unclear how such stimulation can modify underlying thalamo-cortical oscillations. HYPOTHESIS: Here we tested whether rhythmic synchronized thalamo-cortical activity during absence seizures can be desynchronized by single-pulse optogenetic stimulation of CN neurons to stop seizure activity. METHODS: We performed simultaneous thalamic single-cell and electrocorticographical recordings in awake tottering mice, a genetic model of absence epilepsy, to investigate the rhythmicity and synchronicity. Furthermore, we tested interictally the impact of single-pulse optogenetic CN stimulation on thalamic and cortical recordings. RESULTS: We show that thalamic firing is highly rhythmic and synchronized with cortical spike-and-wave discharges during absence seizures and that this phase-locked activity can be desynchronized upon single-pulse optogenetic stimulation of CN neurons. Notably, this stimulation of CN neurons was more effective in stopping seizures than direct, focal stimulation of groups of afferents innervating the thalamus. During interictal periods, CN stimulation evoked reliable but heterogeneous responses in thalamic cells in that they could show an increase or decrease in firing rate at various latencies, bi-phasic responses with an initial excitatory and subsequent inhibitory response, or no response at all. CONCLUSION: Our data indicate that stimulation of CN neurons and their fibers in thalamus evokes differential effects in its downstream pathways and desynchronizes phase-locked thalamic neuronal firing during seizures, revealing a neurobiological mechanism that may explain how cerebellar stimulation can stop seizures.


Subject(s)
Cerebellar Nuclei , Epilepsy, Absence , Animals , Cerebral Cortex , Epilepsy, Absence/genetics , Mice , Neurons , Thalamic Nuclei , Thalamus
6.
Elife ; 102021 05 11.
Article in English | MEDLINE | ID: mdl-33973524

ABSTRACT

Distinct populations of Purkinje cells (PCs) with unique molecular and connectivity features are at the core of the modular organization of the cerebellum. Previously, we showed that firing activity of PCs differs between ZebrinII-positive and ZebrinII-negative cerebellar modules (Zhou et al., 2014; Wu et al., 2019). Here, we investigate the timing and extent of PC differentiation during development in mice. We found that several features of PCs, including activity levels, dendritic arborization, axonal shape and climbing fiber input, develop differentially between nodular and anterior PC populations. Although all PCs show a particularly rapid development in the second postnatal week, anterior PCs typically have a prolonged physiological and dendritic maturation. In line herewith, younger mice exhibit attenuated anterior-dependent eyeblink conditioning, but faster nodular-dependent compensatory eye movement adaptation. Our results indicate that specific cerebellar regions have unique developmental timelines which match with their related, specific forms of cerebellum-dependent behaviors.


Subject(s)
Cerebellum/physiology , Purkinje Cells/physiology , Action Potentials/physiology , Animals , Animals, Newborn , Axons/physiology , Cerebellum/cytology , Female , Male , Mice , Mice, Inbred C57BL
7.
J Neurosci ; 41(26): 5579-5594, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34021041

ABSTRACT

Protein phosphatase 2B (PP2B) is critical for synaptic plasticity and learning, but the molecular mechanisms involved remain unclear. Here we identified different types of proteins that interact with PP2B, including various structural proteins of the postsynaptic densities (PSDs) of Purkinje cells (PCs) in mice. Deleting PP2B reduced expression of PSD proteins and the relative thickness of PSD at the parallel fiber to PC synapses, whereas reexpression of inactive PP2B partly restored the impaired distribution of nanoclusters of PSD proteins, together indicating a structural role of PP2B. In contrast, lateral mobility of surface glutamate receptors solely depended on PP2B phosphatase activity. Finally, the level of motor learning covaried with both the enzymatic and nonenzymatic functions of PP2B. Thus, PP2B controls synaptic function and learning both through its action as a phosphatase and as a structural protein that facilitates synapse integrity.SIGNIFICANCE STATEMENT Phosphatases are generally considered to serve their critical role in learning and memory through their enzymatic operations. Here, we show that protein phosphatase 2B (PP2B) interacts with structural proteins at the synapses of cerebellar Purkinje cells. Differentially manipulating the enzymatic and structural domains of PP2B leads to different phenotypes in cerebellar learning. We propose that PP2B is crucial for cerebellar learning via two complementary actions, an enzymatic and a structural operation.


Subject(s)
Calcineurin/metabolism , Learning/physiology , Neuronal Plasticity/physiology , Purkinje Cells/physiology , Animals , Eye Movements/physiology , Mice , Post-Synaptic Density/metabolism
8.
J Physiol ; 599(7): 2055-2073, 2021 04.
Article in English | MEDLINE | ID: mdl-33492688

ABSTRACT

KEY POINTS: Ventrolateral thalamus (VL) integrates information from cerebellar nuclei and motor cortical layer VI. Inputs from the cerebellar nuclei evoke large-amplitude responses that depress upon repetitive stimulation while layer VI inputs from motor cortex induce small-amplitude facilitating responses. We report that the spiking of VL neurons can be determined by the thalamic membrane potential, the frequency of cerebellar inputs and the duration of pauses after cerebellar high frequency stimulation. Inputs from motor cortical layer VI shift the VL membrane potential and modulate the VL spike output in response to cerebellar stimulation.  These results help us to decipher how the cerebellar output is integrated in VL and modulated by motor cortical input. ABSTRACT: Orchestrating complex movements requires well-timed interaction of cerebellar, thalamic and cerebral structures, but the mechanisms underlying the integration of cerebro-cerebellar information in motor thalamus remain largely unknown. Here we investigated how excitatory inputs from cerebellar nuclei (CN) and primary motor cortex layer VI (M1-L6) neurons may regulate the activity of neurons in the mouse ventrolateral (VL) thalamus. Using dual-optical stimulation of the CN and M1-L6 axons and in vitro whole-cell recordings of the responses in VL neurons, we studied the individual responses as well as the effects of combined CN and M1-L6 stimulation. Whereas CN inputs evoked large-amplitude responses that were depressed upon repetitive stimulation, M1-L6 inputs elicited small-amplitude responses that were facilitated upon repetitive stimulation. Moreover, pauses in CN stimuli could directly affect VL spiking probability, an effect that was modulated by VL membrane potential. When CN and M1-L6 pathways were co-activated, motor cortical afferents increased the thalamic spike output in response to cerebellar stimulation, indicating that CN and M1 synergistically, yet differentially, control the membrane potential and spiking pattern of VL neurons.


Subject(s)
Motor Cortex , Thalamus , Animals , Cerebellar Nuclei , Cerebellum , Electric Stimulation , Mice
9.
J Neurophysiol ; 125(2): 398-407, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33326350

ABSTRACT

Cacna1a encodes the pore-forming α1A subunit of CaV2.1 voltage-dependent calcium channels, which regulate neuronal excitability and synaptic transmission. Purkinje cells in the cortex of cerebellum abundantly express these CaV2.1 channels. Here, we show that homozygous tottering (tg) mice, which carry a loss-of-function Cacna1a mutation, exhibit severely impaired learning in Pavlovian eyeblink conditioning, which is a cerebellar-dependent learning task. Performance of reflexive eyeblinks is unaffected in tg mice. Transient seizure activity in tg mice further corrupted the amplitude of eyeblink conditioned responses. Our results indicate that normal calcium homeostasis is imperative for cerebellar learning and that the oscillatory state of the brain can affect the expression thereof.NEW & NOTEWORTHY In this study, we confirm the importance of normal calcium homeostasis in neurons for learning and memory formation. In a mouse model with a mutation in an essential calcium channel that is abundantly expressed in the cerebellum, we found severely impaired learning in eyeblink conditioning. Eyeblink conditioning is a cerebellar-dependent learning task. During brief periods of brain-wide oscillatory activity, as a result of the mutation, the expression of conditioned eyeblinks was even further disrupted.


Subject(s)
Blinking , Calcium Channels, N-Type/genetics , Conditioning, Classical , Animals , Calcium/metabolism , Cerebellum/physiology , Female , Homozygote , Male , Mice , Mice, Inbred C57BL
10.
Pediatr Res ; 89(5): 1171-1178, 2021 04.
Article in English | MEDLINE | ID: mdl-32967002

ABSTRACT

BACKGROUND: Postmortem examinations frequently show cerebellar injury in infants with severe hypoxic-ischemic encephalopathy (HIE), while it is less well visible on MRI. The primary aim was to investigate the correlation between cerebellar apparent diffusion coefficient (ADC) values and histopathology in infants with HIE. The secondary aim was to compare ADC values in the cerebellum of infants with HIE and infants without brain injury. METHODS: ADC values in the cerebellar vermis, hemispheres and dentate nucleus (DN) of (near-)term infants with HIE (n = 33) within the first week after birth were compared with neonates with congenital non-cardiac anomalies, normal postoperative MRIs and normal outcome (n = 22). Microglia/macrophage activation was assessed using CD68 and/or HLA-DR staining and Purkinje cell (PC) injury using H&E-stained slices. The correlation between ADC values and the histopathological measures was analyzed. RESULTS: ADC values in the vermis (p = 0.021) and DN (p < 0.001) were significantly lower in infants with HIE compared to controls. ADC values in the cerebellar hemispheres were comparable. ADC values in the vermis were correlated with the number and percentage of normal PCs; otherwise ADC values and histology were not correlated. CONCLUSION: Histopathological injury in the cerebellum is common in infants with HIE. ADC values underestimate histopathological injury. IMPACT: ADC values might underestimate cerebellar injury in neonates with HIE. ADC values in the vermis and dentate nucleus of infants with HIE are lower compared to controls, but not in the cerebellar hemispheres. Abnormal ADC values are only found when cytotoxic edema is very severe. ADC values in the vermis are correlated with Purkinje cell injury in the vermis; furthermore, there were no correlations between ADC values and histopathological measures.


Subject(s)
Cerebellum/pathology , Hypoxia-Ischemia, Brain/pathology , Infant, Newborn, Diseases/pathology , Female , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Infant, Newborn, Diseases/diagnostic imaging , Magnetic Resonance Imaging , Male , Retrospective Studies
11.
Front Pediatr ; 8: 595693, 2020.
Article in English | MEDLINE | ID: mdl-33344386

ABSTRACT

Objective: Sildenafil is under investigation as a potential agent to improve uteroplacental perfusion in fetal growth restriction (FGR). However, the STRIDER RCT was halted after interim analysis due to futility and higher rates of persistent pulmonary hypertension and mortality in sildenafil-exposed neonates. This hypothesis-generating study within the Dutch STRIDER trial sought to understand what happened to these neonates by studying their regional tissue oxygen saturation (rSO2) within the first 72 h after birth. Methods: Pregnant women with FGR received 25 mg placebo or sildenafil thrice daily within the Dutch STRIDER trial. We retrospectively analyzed the cerebral and renal rSO2 monitored with near-infrared spectroscopy (NIRS) in a subset of neonates admitted to two participating neonatal intensive care units, in which NIRS is part of standard care. Secondarily, blood pressure and heart rate were analyzed to aid interpretation. Differences in oxygenation levels and interaction with time (slope) between placebo- and sildenafil-exposed groups were tested using mixed effects analyses with multiple comparisons tests. Results: Cerebral rSO2 levels were not different between treatment groups (79 vs. 77%; both n = 14) with comparable slopes. Sildenafil-exposed infants (n = 5) showed lower renal rSO2 than placebo-exposed infants (n = 6) during several time intervals on day one and two. At 69-72 h, however, the sildenafil group showed higher renal rSO2 than the placebo group. Initially, diastolic blood pressure was higher and heart rate lower in the sildenafil than the placebo group, which changed during day two. Conclusions: Although limited by sample size, our data suggest that prenatal sildenafil alters renal but not cerebral oxygenation in FGR neonates during the first 72 post-natal hours. The observed changes in renal oxygenation could reflect a vasoconstrictive rebound from sildenafil. Similar changes observed in accompanying vital parameters support this hypothesis.

12.
Cell Rep ; 31(2): 107515, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294428

ABSTRACT

The majority of excitatory postsynaptic currents in the brain are gated through AMPA-type glutamate receptors, the kinetics and trafficking of which can be modulated by auxiliary proteins. It remains to be elucidated whether and how auxiliary proteins can modulate synaptic function to contribute to procedural memory formation. In this study, we report that the AMPA-type glutamate receptor (AMPAR) auxiliary protein SHISA6 (CKAMP52) is expressed in cerebellar Purkinje cells, where it co-localizes with GluA2-containing AMPARs. The absence of SHISA6 in Purkinje cells results in severe impairments in the adaptation of the vestibulo-ocular reflex and eyeblink conditioning. The physiological abnormalities include decreased presence of AMPARs in synaptosomes, impaired excitatory transmission, increased deactivation of AMPA receptors, and reduced induction of long-term potentiation at Purkinje cell synapses. Our data indicate that Purkinje cells require SHISA6-dependent modification of AMPAR function in order to facilitate cerebellar, procedural memory formation.


Subject(s)
Carrier Proteins/genetics , Membrane Proteins/genetics , Purkinje Cells/metabolism , Receptors, AMPA/metabolism , Animals , Carrier Proteins/metabolism , Excitatory Postsynaptic Potentials/physiology , Female , Glutamic Acid/metabolism , Long-Term Potentiation/physiology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Protein Transport , Synapses/metabolism , Synaptic Transmission/physiology
13.
Sci Rep ; 10(1): 5283, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210267

ABSTRACT

The cerebellum is connected to numerous regions of the contralateral side of the cerebrum. Motor and cognitive deficits following neonatal cerebellar hemorrhages (CbH) in extremely preterm neonates may be related to remote cortical alterations, following disrupted cerebello-cerebral connectivity as was previously shown within six CbH infants. In this retrospective case series study, we used MRI and advanced surface-based analyses to reconstruct gray matter (GM) changes in cortical thickness and cortical surface area in extremely preterm neonates (median age = 26; range: 24.9-26.7 gestational weeks) with large isolated unilateral CbH (N = 5 patients). Each CbH infant was matched with their own preterm infant cohort (range: 20-36 infants) based on sex and gestational age at birth. On a macro level, our data revealed that the contralateral cerebral hemisphere of CbH neonates did not show less cortical thickness or cortical surface area than their ipsilateral cerebral hemisphere at term. None of the cases differed from their matched cohort groups in average cortical thickness or average cortical surface area in the ipsilateral or contralateral cerebral hemisphere. On a micro (i.e. vertex) level, we established high variability in significant local cortical GM alteration patterns across case-cohort groups, in which the cases showed thicker or bigger volume in some regions, among which the caudal middle frontal gyrus, insula and parahippocampal gyrus, and thinner or less volume in other regions, among which the cuneus, precuneus and supratentorial gyrus. This study highlights that cerebellar injury during postnatal stages may have  widespread bilateral influence on the early maturation of cerebral cortical regions, which implicate complex cerebello-cerebral interactions to be present at term birth.


Subject(s)
Brain Damage, Chronic/pathology , Cerebral Cortex/pathology , Gray Matter/pathology , Infant, Premature, Diseases/pathology , Intracranial Hemorrhages/pathology , Brain Damage, Chronic/diagnostic imaging , Brain Damage, Chronic/etiology , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Dominance, Cerebral , Female , Gestational Age , Gray Matter/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Infant, Newborn , Infant, Premature , Intracranial Hemorrhages/complications , Intracranial Hemorrhages/diagnostic imaging , Magnetic Resonance Imaging , Male , Neuroimaging , Retrospective Studies
14.
Cerebellum ; 18(6): 1064-1097, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31165428

ABSTRACT

The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.


Subject(s)
Cerebellum/physiology , Consensus , Deep Brain Stimulation/methods , Models, Animal , Animals , Cerebellum/cytology , Deep Brain Stimulation/trends , Humans
15.
Front Physiol ; 10: 540, 2019.
Article in English | MEDLINE | ID: mdl-31143126

ABSTRACT

Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism. Immature OL precursor cells in the developing brain are believed to be highly sensitive to perinatal inflammation and cerebral oxygen fluctuations, leading to impaired OL differentiation and eventually myelination failure. OL lineage development under normal and pathological circumstances and the process of (re)myelination have been studied extensively over the years, often in the context of other adult and pediatric white matter pathologies such as stroke and multiple sclerosis (MS). Various studies have proposed stem cell-based therapeutic strategies to boost white matter regeneration as a potential strategy against a wide range of neurological diseases. In this review we will discuss experimental studies focusing on mesenchymal stem cell (MSC) therapy to reduce white matter injury (WMI) in multiple adult and neonatal neurological diseases. What lessons have been learned from these previous studies and how can we translate this knowledge to application of MSCs for the injured white matter in the preterm infant? A perspective on the current state of stem cell therapy will be given and we will discuss different important considerations of MSCs including cellular sources, timing of treatment and administration routes. Furthermore, we reflect on optimization strategies that could potentially reinforce stem cell therapy, including preconditioning and genetic engineering of stem cells or using cell-free stem cell products, to optimize cell-based strategy for vulnerable preterm infants in the near future.

17.
Cell Rep ; 26(1): 54-64.e6, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605686

ABSTRACT

Loss of function in the Scn1a gene leads to a severe epileptic encephalopathy called Dravet syndrome (DS). Reduced excitability in cortical inhibitory neurons is thought to be the major cause of DS seizures. Here, in contrast, we show enhanced excitability in thalamic inhibitory neurons that promotes the non-convulsive seizures that are a prominent yet poorly understood feature of DS. In a mouse model of DS with a loss of function in Scn1a, reticular thalamic cells exhibited abnormally long bursts of firing caused by the downregulation of calcium-activated potassium SK channels. Our study supports a mechanism in which loss of SK activity causes the reticular thalamic neurons to become hyperexcitable and promote non-convulsive seizures in DS. We propose that reduced excitability of inhibitory neurons is not global in DS and that non-GABAergic mechanisms such as SK channels may be important targets for treatment.


Subject(s)
Epilepsies, Myoclonic/physiopathology , Seizures/physiopathology , Thalamus/physiopathology , Animals , Disease Models, Animal , Humans , Mice
18.
Pediatrics ; 142(5)2018 11.
Article in English | MEDLINE | ID: mdl-30341153

ABSTRACT

CONTEXT: The effect of neonatal cerebellar hemorrhage on neurodevelopmental outcome (NDO) in the absence of supratentorial injury is still largely unknown. OBJECTIVE: To evaluate the influence of isolated neonatal cerebellar hemorrhage on cognitive, motor, language, and behavioral NDOs and assess the effect of location and size on outcome. DATA SOURCES: Embase, Medline, and Scopus were searched from inception to September 30, 2017. STUDY SELECTION: Studies in which a diagnosis of isolated cerebellar hemorrhage was reported in preterm infants (<32 weeks' gestation) with a standardized NDO at ≥12 months of age were included. DATA EXTRACTION: Patient characteristics, location, and size of bleeding and NDO (defined as severe [yes or no] on the basis of given cutoff points) in 4 domains were extracted. RESULTS: Of the 1519 studies identified, 8 were included in final analyses. Of infants with isolated cerebellar hemorrhage, 128 were described (cumulative incidence: 2.3%). The incidence of severe delay in cognition, motor, language, and behavioral development was 38%, 39%, 41%, and 38%, respectively. The overall incidence of severe neurodevelopmental delay in ≥1 domain ranged from 43% to 75% and was most seen in infants with vermis involvement (87%-93%) and with large bleeds (46%-82%). LIMITATIONS: Different neurodevelopmental scales lead to data heterogeneity, and reporting of data on a group level limited possibilities for an outcome description on an individual level. CONCLUSIONS: Of infants with isolated cerebellar hemorrhage, 43% to 75% were severely delayed in cognition, motor, language, and/or behavioral development, with the highest incidence with vermis involvement and with large bleeds.


Subject(s)
Cerebral Hemorrhage/complications , Developmental Disabilities/etiology , Infant, Premature, Diseases/etiology , Developmental Disabilities/epidemiology , Humans , Incidence , Infant , Infant, Newborn , Infant, Premature
19.
Front Cell Neurosci ; 12: 101, 2018.
Article in English | MEDLINE | ID: mdl-29765304

ABSTRACT

The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.

20.
Cell Rep ; 23(9): 2690-2704, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29847799

ABSTRACT

The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network.


Subject(s)
Cerebellum/physiology , Thalamic Nuclei/physiology , Animals , Axons/metabolism , Axons/ultrastructure , Cerebellar Nuclei/physiology , Cerebellar Nuclei/ultrastructure , Cerebellum/ultrastructure , Dendrites/physiology , Electric Stimulation , Excitatory Postsynaptic Potentials , Female , Male , Mice, Inbred C57BL , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Synapses/physiology , Synapses/ultrastructure , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...