Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663461

ABSTRACT

Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt+ Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.

2.
Oncotarget ; 8(34): 56095-56109, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28915576

ABSTRACT

The transcriptional nuclear factor kappa B (NF-κB)-coactivator B cell leukemia-3 (Bcl-3) is a molecular regulator of cell death and proliferation. Bcl-3 has been shown to be widely expressed in different cancer types including hepatocellular carcinoma (HCC). Its influence on hepatocarcinogenesis is still undetermined. To examine the role of Bcl-3 in hepatocarcinogenesis mice with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) were exposed to diethylnitrosamine (DEN) and phenobarbital (PB). Hepatic Bcl-3 overexpression attenuated DEN/PB-induced hepatocarcinogenesis. Bcl-3Hep mice exhibited a lower number and smaller tumor nodules in response to DEN/PB at 40 weeks of age. Reduced HCC formation was accompanied by a lower rate of cell proliferation and a distinct expression pattern of growth and differentiation-related genes. Activation of c-Jun N-terminal kinase (JNK) and especially extracellular-signal regulated kinase (ERK) was reduced in tumor and tumor-surrounding liver tissue of Bcl-3Hep mice, while p38 and NF-κB p65 were phosphorylated to a higher extent compared to the wild type. In parallel, the absolute number of intrahepatic macrophages, CD8+ T cells and activated B cells was reduced in DEN/PB-treated Bcl-3Hep mice mirroring a reduction of tumor-associated inflammation. Interestingly, at the early time point of 7 weeks following tumor initiation, a higher rate of apoptotic cell death was observed in Bcl-3Hep mice. In summary, hepatocyte-restricted Bcl-3 overexpression reduced hepatocarcinogenesis related to prolonged liver injury early after tumor initiation likely due to decreased survival of DEN/PB-damaged, premalignant cells. Therefore, Bcl-3 could become a novel player in the development of therapeutic and diagnostic tools for HCC.

3.
Immunity ; 44(5): 1114-26, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192577

ABSTRACT

Regulatory T (Treg) cells expressing Foxp3 transcripton factor are essential for immune homeostasis. They arise in the thymus as a separate lineage from conventional CD4(+)Foxp3(-) T (Tconv) cells. Here, we show that the thymic development of Treg cells depends on the expression of their endogenous cognate self-antigen. The formation of these cells was impaired in mice lacking this self-antigen, while Tconv cell development was not negatively affected. Thymus-derived Treg cells were selected by self-antigens in a specific manner, while autoreactive Tconv cells were produced through degenerate recognition of distinct antigens. These distinct modes of development were associated with the expression of T cell receptor of higher functional avidity for self-antigen by Treg cells than Tconv cells, a difference subsequently essential for the control of autoimmunity. Our study documents how self-antigens define the repertoire of thymus-derived Treg cells to subsequently endow this cell type with the capacity to undermine autoimmune attack.


Subject(s)
CTLA-4 Antigen/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/metabolism , T-Lymphocyte Subsets/physiology , T-Lymphocytes, Regulatory/physiology , Thymus Gland/immunology , Animals , Autoantigens/immunology , CTLA-4 Antigen/genetics , Cells, Cultured , Clonal Selection, Antigen-Mediated , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...