Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Diabetes Technol Ther ; 25(7): 485-491, 2023 07.
Article in English | MEDLINE | ID: mdl-37229591

ABSTRACT

Objective: We aimed to assess whether percentage of time spent in hypoglycemia during closed-loop insulin delivery differs by age group and time of day. Methods: We retrospectively analyzed data from hybrid closed-loop studies involving young children (2-7 years), children and adolescents (8-18 years), adults (19-59 years), and older adults (≥60 years) with type 1 diabetes. Main outcome was time spent in hypoglycemia <3.9 mmol/L (<70 mg/dL). Eight weeks of data for 88 participants were analyzed. Results: Median time spent in hypoglycemia over the 24-h period was highest in children and adolescents (4.4% [interquartile range 2.4-5.0]) and very young children (4.0% [3.4-5.2]), followed by adults (2.7% [1.7-4.0]), and older adults (1.8% [1.2-2.2]); P < 0.001 for difference between age groups. Time spent in hypoglycemia during nighttime (midnight-05:59) was lower than during daytime (06:00-23:59) across all age groups. Conclusion: Time in hypoglycemia was highest in the pediatric age group during closed-loop insulin delivery. Hypoglycemia burden was lowest overnight across all age groups.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adolescent , Aged , Child , Child, Preschool , Humans , Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemia/chemically induced , Hypoglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/adverse effects , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use , Retrospective Studies , Treatment Outcome , Young Adult , Adult , Middle Aged
2.
Wien Klin Wochenschr ; 135(Suppl 1): 18-31, 2023 Jan.
Article in German | MEDLINE | ID: mdl-37101022

ABSTRACT

The heterogenous category "specific types of diabetes due to other causes" encompasses disturbances in glucose metabolism due to other endocrine disorders such as acromegaly or hypercortisolism, drug-induced diabetes (e.g. antipsychotic medications, glucocorticoids, immunosuppressive agents, highly active antiretroviral therapy (HAART), checkpoint inhibitors), genetic forms of diabetes (e.g. Maturity Onset Diabetes of the Young (MODY), neonatal diabetes, Down­, Klinefelter- and Turner Syndrome), pancreatogenic diabetes (e.g. postoperatively, pancreatitis, pancreatic cancer, haemochromatosis, cystic fibrosis), and some rare autoimmune or infectious forms of diabetes. Diagnosis of specific diabetes types might influence therapeutic considerations. Exocrine pancreatic insufficiency is not only found in patients with pancreatogenic diabetes but is also frequently seen in type 1 and long-standing type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Endocrine System Diseases , Exocrine Pancreatic Insufficiency , Pancreatic Neoplasms , Infant, Newborn , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Exocrine Pancreatic Insufficiency/diagnosis , Exocrine Pancreatic Insufficiency/therapy
3.
Wien Klin Wochenschr ; 135(Suppl 1): 32-44, 2023 Jan.
Article in German | MEDLINE | ID: mdl-37101023

ABSTRACT

Hyperglycemia significantly contributes to complications in patients with diabetes mellitus. While lifestyle interventions remain cornerstones of disease prevention and treatment, most patients with type 2 diabetes will eventually require pharmacotherapy for glycemic control. The definition of individual targets regarding optimal therapeutic efficacy and safety as well as cardiovascular effects is of great importance. In this guideline we present the most current evidence-based best clinical practice data for healthcare professionals.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Hyperglycemia/drug therapy , Blood Glucose
4.
Wien Klin Wochenschr ; 135(Suppl 1): 53-61, 2023 Jan.
Article in German | MEDLINE | ID: mdl-37101025

ABSTRACT

This Guideline represents the recommendations of the Austrian Diabetes Association (ÖDG) on the use of diabetes technology (insulin pump therapy; continuous glucose monitoring, CGM; hybrid closed-loop systems, HCL; diabetes apps) and access to these technological innovations for people with diabetes mellitus based on current scientific evidence.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/drug therapy , Insulin/therapeutic use , Blood Glucose , Blood Glucose Self-Monitoring , Insulin Infusion Systems , Hypoglycemic Agents/therapeutic use
5.
Wien Klin Wochenschr ; 135(Suppl 1): 106-114, 2023 Jan.
Article in German | MEDLINE | ID: mdl-37101031

ABSTRACT

In contrast to adults, type 1 diabetes mellitus (T1D) is the most frequent form of diabetes in childhood and adolescence (> 90%). After diagnosis the management of children and adolescents with T1D should take place in highly specialized pediatric units experienced in pediatric diabetology. The lifelong substitution of insulin is the cornerstone of treatment whereby modalities need to be individually adapted for patient age and the family routine. In this age group the usage of diabetes technology (glucose sensors, insulinpumps and recently hybrid-closed-loop-systems) is recommended. An optimal metabolic control right from the start of therapy is associated with an improved long-term prognosis. Diabetes education is essential in the management of patients with diabetes and their families and needs to be performed by a multidisciplinary team consisting of a pediatric diabetologists, diabetes educator, dietitian, psychologist and social worker. The Austrian working group for pediatric endocrinology and diabetes (APEDÖ) and the ISPAD (International Society for Pediatric and Adolescent Diabetes) recommend a metabolic goal of HbA1c ≤ 7.0%, ((IFCC) < 53 mmol/mol), and a "Time in range" > 70% for all pediatric age groups without the presence of severe hypoglycemia. Age-related physical, cognitive and psychosocial development, screening for associated diseases, avoidance of acute diabetes-related complications (severe hypoglycemia, diabetic ketoacidosis) and prevention of diabetes-related late complications to ensure high quality of life are the main goals of diabetes treatment in all pediatric age groups.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adolescent , Humans , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/therapy , Hypoglycemic Agents/therapeutic use , Quality of Life , Glycated Hemoglobin , Insulin/therapeutic use , Hypoglycemia/prevention & control , Insulin Infusion Systems , Blood Glucose
6.
J Diabetes Sci Technol ; : 19322968221141924, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36475908

ABSTRACT

OBJECTIVE: Many hybrid closed-loop (HCL) systems struggle to manage unusually high glucose levels as experienced with intercurrent illness or pre-menstrually. Manual correction boluses may be needed, increasing hypoglycemia risk with overcorrection. The Cambridge HCL system includes a user-initiated algorithm intensification mode ("Boost"), activation of which increases automated insulin delivery by approximately 35%, while remaining glucose-responsive. In this analysis, we assessed the safety of "Boost" mode. METHODS: We retrospectively analyzed data from closed-loop studies involving young children (1-7 years, n = 24), children and adolescents (10-17 years, n = 19), adults (≥24 years, n = 13), and older adults (≥60 years, n = 20) with type 1 diabetes. Outcomes were calculated per participant for days with ≥30 minutes of "Boost" use versus days with no "Boost" use. Participants with <10 "Boost" days were excluded. The main outcome was time spent in hypoglycemia <70 and <54 mg/dL. RESULTS: Eight weeks of data for 76 participants were analyzed. There was no difference in time spent <70 and <54 mg/dL between "Boost" days and "non-Boost" days; mean difference: -0.10% (95% confidence interval [CI] -0.28 to 0.07; P = .249) time <70 mg/dL, and 0.03 (-0.04 to 0.09; P = .416) time < 54 mg/dL. Time in significant hyperglycemia >300 mg/dL was 1.39 percentage points (1.01 to 1.77; P < .001) higher on "Boost" days, with higher mean glucose and lower time in target range (P < .001). CONCLUSIONS: Use of an algorithm intensification mode in HCL therapy is safe across all age groups with type 1 diabetes. The higher time in hyperglycemia observed on "Boost" days suggests that users are more likely to use algorithm intensification on days with extreme hyperglycemic excursions.

7.
J Diabetes Sci Technol ; : 19322968221145184, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36540007

ABSTRACT

BACKGROUND: CamAPS FX is a hybrid closed-loop smartphone app used to manage type one diabetes. The closed-loop algorithm has a default target glucose of 5.8 mmol/L (104.5 mg/dL), but users can select personal glucose targets (adjustable between 4.4 mmol/L and 11.0 mmol/L [79 mg/dL and 198 mg/dL, respectively]). METHOD: In this post-hoc analysis, we evaluated the impact of personal glucose targets on glycemic control using data from participants in five randomized controlled trials. RESULTS: Personal glucose targets were widely used, with 20.3% of all days in the data set having a target outside the default target bin (5.5-6.0 mmol/L [99-108 mg/dL]). Personal glucose targets >6.5 mmol/L (117 mg/dL) were associated with significantly less time in target range (3.9-10.0 mmol/L [70-180 mg/dL]; 6.5-7.0 mmol/L [117-126 mg/dL]: mean difference = -3.2 percentage points [95% CI: -5.3 to -1.2; P < .001]; 7.0-7.5 mmol/L [126-135 mg/dL]: -10.8 percentage points [95% CI: -14.1 to -7.6; P < .001]). Personal targets >6.5 mmol/L (117 mg/dL) were associated with significantly lower time (<3.9 mmol/L [<70 mg/dL]; 6.5-7.0 mmol/L [117-126 mg/dL]: -1.85 percentage points [95% CI: -2.37 to -1.34; P < .001]; 7.0-7.5 mmol/L [126-135 mg/dL]: -2.68 percentage points [95% CI: -3.49 to -1.86; P < .001]). CONCLUSIONS: Discrete study populations showed differences in glucose control when applying similar personal targets.

8.
Diabetes Care ; 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36350787

ABSTRACT

OBJECTIVE: To evaluate the impact of CamAPS FX hybrid closed-loop (HCL) automated insulin delivery in very young children with type 1 diabetes (T1D) on caregivers' well-being, fear of hypoglycemia, and sleepiness. RESEARCH DESIGN AND METHODS: We conducted a multinational, open-label, randomized crossover study. Children (age 1-7 years) with T1D received treatment for two 4-month periods in random order, comparing HCL with sensor augmented pump (control). At baseline and after each treatment period, caregivers were invited to complete World Health Organization-Five Well-Being Index, Hypoglycemia Fear Survey, and Epworth Sleepiness Scale questionnaires. RESULTS: Caregivers of 74 children (mean ± SD age 5 ± 2 years and baseline HbA1c 7.3 ± 0.7%; 42% female) participated. Results revealed significantly lower scores for hypoglycemia fear (P < 0.001) and higher scores for well-being (P < 0.001) after HCL treatment. A trend toward a reduction in sleepiness score was observed (P = 0.09). CONCLUSIONS: Our results suggest better well-being and less hypoglycemia fear in caregivers of very young children with T1D on CamAPS FX HCL.

9.
Pediatr Diabetes ; 23(8): 1656-1664, 2022 12.
Article in English | MEDLINE | ID: mdl-36097824

ABSTRACT

OBJECTIVE: To examine the prevalence, time trends, and risk factors of diabetic retinopathy (DR) among youth with type 1 diabetes (T1D) from 11 countries (Australia, Austria, Denmark, England, Germany, Italy, Luxemburg, Netherlands, Slovenia, United States, and Wales). SUBJECTS AND METHODS: Data on individuals aged 10-21 years with T1D for >1 year during the period 2000-2020 were analyzed. We used a cross-sectional design using the most recent year of visit to investigate the time trend. For datasets with longitudinal data, we aggregated the variables per participant and observational year, using data of the most recent year to take the longest observation period into account. DR screening was performed through quality assured national screening programs. Multiple logistic regression models adjusted for the year of the eye examination, age, gender, minority status, and duration of T1D were used to evaluate clinical characteristics and the risk of DR. RESULTS: Data from 156,090 individuals (47.1% female, median age 15.7 years, median duration of diabetes 5.2 years) were included. Overall, the unadjusted prevalence of any DR was 5.8%, varying from 0.0% (0/276) to 16.2% between countries. The probability of DR increased with longer disease duration (aORper-1-year-increase  = 1.04, 95% CI: 1.03-1.04, p < 0.0001), and decreased over time (aORper-1-year-increase  = 0.99, 95% CI: 0.98-1.00, p = 0.0093). Evaluating possible modifiable risk factors in the exploratory analysis, the probability of DR increased with higher HbA1c (aORper-1-mmol/mol-increase-in-HbA1c  = 1.03, 95% CI: 1.03-1.03, p < 0.0001) and was higher among individuals with hypertension (aOR = 1.24, 95% CI: 1.11-1.38, p < 0.0001) and smokers (aOR = 1.30, 95% CI: 1.17-1.44, p < 0.0001). CONCLUSIONS: The prevalence of DR in this large cohort of youth with T1D varied among countries, increased with diabetes duration, decreased over time, and was associated with higher HbA1c, hypertension, and smoking.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Hypertension , Humans , Adolescent , Child , Female , Male , Diabetes Mellitus, Type 1/epidemiology , Cross-Sectional Studies , Glycated Hemoglobin , Prevalence , Risk Factors , Diabetic Retinopathy/epidemiology , Hypertension/complications
11.
Pediatr Diabetes ; 23(7): 999-1008, 2022 11.
Article in English | MEDLINE | ID: mdl-35822653

ABSTRACT

OBJECTIVE: To describe clinical presentation/longterm outcomes of patients with ABCC8/KCNJ11 variants in a large cohort of patients with diabetes. RESEARCH DESIGN AND METHODS: We analyzed patients in the Diabetes Prospective Follow-up (DPV) registry with diabetes and pathogenic variants in the ABCC8/KCNJ11 genes. For patients with available data at three specific time-points-classification as K+ -channel variant, 2-year follow-up and most recent visit-the longitudinal course was evaluated in addition to the cross-sectional examination. RESULTS: We identified 93 cases with ABCC8 (n = 54)/KCNJ11 (n = 39) variants, 63 of them with neonatal diabetes. For 22 patients, follow-up data were available. Of these, 19 were treated with insulin at diagnosis, and the majority of patients was switched to sulfonylurea thereafter. However, insulin was still administered in six patients at the most recent visit. Patients were in good metabolic control with a median (IQR) A1c level of 6.0% (5.5-6.7), that is, 42.1 (36.6-49.7) mmol/mol after 2 years and 6.7% (6.0-8.0), that is, 49.7 (42.1-63.9) mmol/mol at the most recent visit. Five patients were temporarily without medication for a median (IQR) time of 4.0 (3.5-4.4) years, while two other patients continue to be off medication at the last follow-up. CONCLUSIONS: ABCC8/KCNJ11 variants should be suspected in children diagnosed with diabetes below the age of 6 months, as a high percentage can be switched from insulin to oral antidiabetic drugs. Thirty patients with diabetes due to pathogenic variants of ABCC8 or KCNJ11 were diagnosed beyond the neonatal period. Patients maintain good metabolic control even after a diabetes duration of up to 11 years.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Infant, Newborn, Diseases , Potassium Channels, Inwardly Rectifying , Child , Humans , Infant , Infant, Newborn , Austria/epidemiology , Cross-Sectional Studies , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , Diabetes Mellitus, Type 2/genetics , Glycated Hemoglobin , Hypoglycemic Agents/therapeutic use , Infant, Newborn, Diseases/diagnosis , Infant, Newborn, Diseases/epidemiology , Infant, Newborn, Diseases/genetics , Insulin/therapeutic use , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Prospective Studies , Registries , Sulfonylurea Receptors/genetics
12.
Pediatr Diabetes ; 23(6): 799-808, 2022 09.
Article in English | MEDLINE | ID: mdl-35561092

ABSTRACT

OBJECTIVES: We explored parents' views about healthcare professionals having remote access to their young child's insulin and glucose data during a clinical trial to inform use of data sharing in routine pediatric diabetes care. RESEARCH DESIGN AND METHODS: Interviews with 33 parents of 30 children (aged 1-7 years) with type 1 diabetes participating in a randomized trial (KidsAP02) comparing hybrid closed-loop system use with sensor-augmented pump therapy. Data were analyzed using a qualitative descriptive approach. RESULTS: Parents reported multiple benefits to healthcare professionals being able to remotely access their child's glucose and insulin data during the trial, despite some initial concerns regarding the insights offered into everyday family life. Key benefits included: less work uploading/sharing data; improved consultations; and, better clinical input and support from healthcare professionals between consultations. Parents noted how healthcare professionals' real-time data access facilitated remote delivery of consultations during the COVID-19 pandemic, and how these were more suitable for young children than face-to-face appointments. Parents endorsed use of real-time data sharing in routine clinical care, subject to caveats regarding data access, security, and privacy. They also proposed that, if data sharing were used, consultations for closed-loop system users in routine clinical care could be replaced with needs-driven, ad-hoc contact. CONCLUSIONS: Real-time data sharing can offer clinical, logistical, and quality-of-life benefits and enhance opportunities for remote consultations, which may be more appropriate for young children. Wider rollout would require consideration of ethical and cybersecurity issues and, given the heightened intrusion on families' privacy, a non-judgmental, collaborative approach by healthcare professionals.


Subject(s)
Diabetes Mellitus, Type 1 , Parents , COVID-19 , Child , Child, Preschool , Delivery of Health Care , Diabetes Mellitus, Type 1/drug therapy , Glucose , Humans , Infant , Insulin/therapeutic use , Pandemics , Parents/psychology , Qualitative Research , Randomized Controlled Trials as Topic
13.
Diabetes Res Clin Pract ; 187: 109877, 2022 May.
Article in English | MEDLINE | ID: mdl-35469973

ABSTRACT

AIMS: To explore parents' experiences of using a hybrid closed-loop system (CamAPS FX) when caring for a very young child (aged 1-7 years) with type 1 diabetes. METHODS: Interviews with n = 33 parents of 30 children who used the system during a randomised controlled trial. Data analysis used a descriptive thematic approach. RESULTS: While some parents were initially reticent about handing control to the system, all reported clinical benefits to using the technology, having to do less diabetes-related work and needing less clinical input over time. Parents welcomed opportunities to enhance the system's efficacy (using Ease-off and Boost functions) as required. Parents described how the system's automated glucose control facilitated more normality, including sleeping better, worrying less about their child, and feeling more confident and able to outsource care. Parents also described more normality for the child (alongside better sleep, mood and concentration, and lessened distress) and siblings. Parents liked being able to administer insulin using a smartphone, but suggested refinements to device size and functionality. CONCLUSIONS: Using a hybrid closed-loop system in very young children can facilitate greater normality and may result in a lessened demand for health professionals' input. Systems may need to be customised for very young children.


Subject(s)
Diabetes Mellitus, Type 1 , Blood Glucose/analysis , Child , Child, Preschool , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Parents , Qualitative Research
14.
Diabet Med ; 39(7): e14828, 2022 07.
Article in English | MEDLINE | ID: mdl-35274356

ABSTRACT

AIMS: To explore parents' experiences of using remote monitoring technology when caring for a very young child with type 1 diabetes during a clinical trial. METHODS: Interviews were conducted with parents of 30 children (aged 1-7 years) participating in a trial (the KidsAP02 study) comparing hybrid closed-loop insulin delivery with sensor-augmented pump therapy. In both arms, parents had access to remote monitoring technology. Data analysis focused on identification of descriptive themes. RESULTS: Remote monitoring technology gave parents improved access to data which helped them pre-empt and manage glucose excursions. Parents observed how, when children were in their own care, they could be more absent while present, as their attention could shift to non-diabetes-related activities. Conversely, when children were others' care, remote monitoring enabled parents to be present while absent, by facilitating oversight and collaboration with caregivers. Parents described how remote monitoring made them feel more confident allowing others to care for their children. Parents' confidence increased when using a hybrid closed-loop system, as less work was required to keep glucose in range. Benefits to children were also highlighted, including being able to play and sleep uninterrupted and attend parties and sleepovers without their parents. While most parents welcomed the increased sense of control remote monitoring offered, some noted downsides, such as lack of respite from caregiving responsibilities. CONCLUSIONS: Remote monitoring can offer manifold benefits to both parents and very young children with type 1 diabetes. Some parents, however, may profit from opportunities to take 'time out'.


Subject(s)
Diabetes Mellitus, Type 1 , Parents , Remote Sensing Technology , Blood Glucose , Blood Glucose Self-Monitoring , Child , Child, Preschool , Clinical Trials as Topic , Diabetes Mellitus, Type 1/drug therapy , Humans , Infant , Insulin/therapeutic use , Insulin Infusion Systems , Parents/psychology
15.
Front Pediatr ; 10: 820156, 2022.
Article in English | MEDLINE | ID: mdl-35237540

ABSTRACT

OBJECTIVE: We analyzed the annual prevalence of onset-DKA (diabetic ketoacidosis) from 2012 to 2020 with a sub-analysis for lockdown-periods during the COVID-19 pandemic in 2020. DESIGN: All newly diagnosed children with type 1 diabetes (T1D) aged <15 years are prospectively registered in the population-based Austrian Diabetes Incidence Study in Austria. MAIN OUTCOME MEASURES: The annual DKA prevalence was analyzed using Joinpoint regression. Definition of DKA: pH <7.3, mild DKA: pH 7.3 to ≤ 7.1, severe DKA: pH <7.1. DKA prevalence during the lockdown periods in 2020 and the corresponding periods in 2015-2019 were examined using Fisher's exact test. RESULTS: In the years 2012-2020 the mean prevalence for onset-DKA in Austria was 43.6% [95%CI (confidence interval): 41.6, 45.7] and thus above the mean prevalence of previous decades (1989-2011) of 37,1 % (95%CI: 35.6, 38.6). A particularly high prevalence was found among children <2 years of age (72.0% DKA, 32.8% severe DKA). No significant gender difference was found. Prevalence of severe DKA at T1D-onset increased significantly since 2015 (p = 0.023). During the lockdown in 2020, 59.3% of children were diagnosed with DKA at T1D-onset, compared to 42.1% during the previous 5 years (p = 0.022). Moreover, 20% of children had severe DKA at T1D diagnosis, compared to 14% during the comparison period. CONCLUSIONS: The previously already high prevalence of DKA at T1D-onset has further increased over time. The COVID-19 pandemic has exacerbated the problem of a late or delayed diagnosis of diabetes in children resulting in onset-DKA. The alarmingly increased prevalence of DKA in Austrian children with T1D calls for urgent action.

16.
N Engl J Med ; 386(3): 209-219, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35045227

ABSTRACT

BACKGROUND: The possible advantage of hybrid closed-loop therapy (i.e., artificial pancreas) over sensor-augmented pump therapy in very young children with type 1 diabetes is unclear. METHODS: In this multicenter, randomized, crossover trial, we recruited children 1 to 7 years of age with type 1 diabetes who were receiving insulin-pump therapy at seven centers across Austria, Germany, Luxembourg, and the United Kingdom. Participants received treatment in two 16-week periods, in random order, in which the closed-loop system was compared with sensor-augmented pump therapy (control). The primary end point was the between-treatment difference in the percentage of time that the sensor glucose measurement was in the target range (70 to 180 mg per deciliter) during each 16-week period. The analysis was conducted according to the intention-to-treat principle. Key secondary end points included the percentage of time spent in a hyperglycemic state (glucose level, >180 mg per deciliter), the glycated hemoglobin level, the mean sensor glucose level, and the percentage of time spent in a hypoglycemic state (glucose level, <70 mg per deciliter). Safety was assessed. RESULTS: A total of 74 participants underwent randomization. The mean (±SD) age of the participants was 5.6±1.6 years, and the baseline glycated hemoglobin level was 7.3±0.7%. The percentage of time with the glucose level in the target range was 8.7 percentage points (95% confidence interval [CI], 7.4 to 9.9) higher during the closed-loop period than during the control period (P<0.001). The mean adjusted difference (closed-loop minus control) in the percentage of time spent in a hyperglycemic state was -8.5 percentage points (95% CI, -9.9 to -7.1), the difference in the glycated hemoglobin level was -0.4 percentage points (95% CI, -0.5 to -0.3), and the difference in the mean sensor glucose level was -12.3 mg per deciliter (95% CI, -14.8 to -9.8) (P<0.001 for all comparisons). The time spent in a hypoglycemic state was similar with the two treatments (P = 0.74). The median time spent in the closed-loop mode was 95% (interquartile range, 92 to 97) over the 16-week closed-loop period. One serious adverse event of severe hypoglycemia occurred during the closed-loop period. One serious adverse event that was deemed to be unrelated to treatment occurred. CONCLUSIONS: A hybrid closed-loop system significantly improved glycemic control in very young children with type 1 diabetes, without increasing the time spent in hypoglycemia. (Funded by the European Commission and others; ClinicalTrials.gov number, NCT03784027.).


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Glycemic Control/instrumentation , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Pancreas, Artificial , Algorithms , Blood Glucose/analysis , Child , Child, Preschool , Cross-Over Studies , Equipment Design , Female , Glycated Hemoglobin/analysis , Glycemic Control/methods , Humans , Hyperglycemia/diagnosis , Infant , Male
17.
Front Endocrinol (Lausanne) ; 12: 721028, 2021.
Article in English | MEDLINE | ID: mdl-34456876

ABSTRACT

Background: Type 1 diabetes in young children is a heavy parental burden. As part of pilot phase of the KIDSAP01 study, we conducted a baseline assessment in parents to study the association between hypoglycemia fear, parental well-being and child behavior. Methods: All parents were invited to fill in baseline questionnaires: hypoglycemia fear survey (HFS), WHO-5, Epworth Sleepiness Scale and Strength and Difficulties Questionnaire (SDQ). Results: 24 children (median age: 5-year, range 1-7 years, 63% male, mean diabetes duration: 3 ± 1.7 years) participated. 23/24 parents filled out the questionnaires. We found a higher score for the hypoglycemia fear behavior 33.9 ± 5.6 compared to hypoglycemia worry 34.6 ± 12.2. Median WHO-5 score was 16 (8 - 22) with poor well-being in two parents. Median daytime sleepiness score was high in five parents (>10). For six children a high total behavioral difficulty score (>16) was reported. Pro social behavior score was lower than normal in six children (<6). Parental well-being was negatively associated with HFS total (r = - 0.50, p <.05) and subscale scores (r = - 0.44, p <.05 for HFS-Worry and HFS-Behavior), child behavior (r = - 0.45, p = .05) and positively with child age and diabetes duration (r = 0.58, p <.01, r = 0.6, p <.01). HFS, parental well-being nor daytime sleepiness are associated with the HbA1c. Conclusion: Regular screening of parental well-being, hypoglycemia fear and child behavior should be part of routine care to target early intervention.


Subject(s)
Diabetes Mellitus, Type 1/psychology , Parents/psychology , Adult , Age of Onset , Anxiety/epidemiology , Anxiety/psychology , Child , Child Behavior/psychology , Child, Preschool , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Europe/epidemiology , Fear/psychology , Female , Humans , Hypoglycemia/prevention & control , Hypoglycemia/psychology , Infant , Insulin/administration & dosage , Insulin/adverse effects , Insulin Infusion Systems , Male , Surveys and Questionnaires
19.
BMJ Open ; 11(2): e042790, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579766

ABSTRACT

INTRODUCTION: Diabetes management in very young children remains challenging. Glycaemic targets are achieved at the expense of high parental diabetes management burden and frequent hypoglycaemia, impacting quality of life for the whole family. Our objective is to assess whether automated insulin delivery can improve glycaemic control and alleviate the burden of diabetes management in this particular age group. METHODS AND ANALYSIS: The study adopts an open-label, multinational, multicentre, randomised, crossover design and aims to randomise 72 children aged 1-7 years with type 1 diabetes on insulin pump therapy. Following screening, participants will receive training on study insulin pump and study continuous glucose monitoring devices. Participants will be randomised to 16-week use of the hybrid closed-loop system (intervention period) or to 16-week use of sensor-augmented pump therapy (control period) with 1-4 weeks washout period before crossing over to the other arm. The order of the two study periods will be random. The primary endpoint is the between-group difference in time spent in the target glucose range from 3.9 to 10.0 mmol/L based on sensor glucose readings during the 16-week study periods. Analyses will be conducted on an intention-to-treat basis. Key secondary endpoints are between group differences in time spent above and below target glucose range, glycated haemoglobin and average sensor glucose. Participants' and caregivers' experiences will be evaluated using questionnaires and qualitative interviews, and sleep quality will be assessed. A health economic analysis will be performed. ETHICS AND DISSEMINATION: Ethics approval has been obtained from Cambridge East Research Ethics Committee (UK), Ethics Committees of the University of Innsbruck, the University of Vienna and the University of Graz (Austria), Ethics Committee of the Medical Faculty of the University of Leipzig (Germany) and Comité National d'Ethique de Recherche (Luxembourg). The results will be disseminated by peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT03784027.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Austria , Blood Glucose Self-Monitoring , Child , Child, Preschool , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Infant , Insulin/therapeutic use , Insulin Infusion Systems , Luxembourg , Multicenter Studies as Topic , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
20.
Pediatr Diabetes ; 21(5): 720-726, 2020 08.
Article in English | MEDLINE | ID: mdl-32410357

ABSTRACT

OBJECTIVE: To analyze the time trends of nationwide diabetes incidence <15 years of age from 1989 until 2017 in Austria. METHODS: The Austrian Diabetes Incidence Study Group registers all newly diagnosed patients with diabetes mellitus <15 years of age in a prospective population-based study. The diabetes type was classified on the basis of clinical and laboratory findings according to American Diabetes Association criteria. Time trends were estimated by Joinpoint analysis. RESULTS: 1311 patients were diagnosed with type 1 diabetes (T1D) between 1989 and 1999 and 4624 patients with any type of diabetes (1999-2017). T1D accounted for the majority of cases (94.2%), 1.8% were classified as type 2 (T2D) and 4.0% as other specific types of diabetes (1999-2017). In the total cohort (age 0 to <15 years), a constant increase until 2012 (annual percent change [APC] 4.5, 95% confidence interval [CI]: 3.94, 5.06) was observed, followed by a leveling off with a corresponding drop (APC 0.28, 95%CI: -3.94, 4.69). This observation was mainly driven by the dynamic in the youngest age group (0-4 years) with a steep increase until 2007 (APC 7.1, 95%CI: 5.05, 9.19) and a decrease from 2007 to 2017 (APC -0.86, 95%CI: 4.41, 2.82). No significant increase of T2D <15 years was detected. Over the observed time period (APC = 3.7, 95%CI: -0.30, 7.78). CONCLUSIONS: The incidence of T1D is declining in young children aged 0 to 4 years, but is still rising in children 5 to 14 years in Austria. Incidence of T2D did not increase significantly and other specific types of diabetes occur twice as often compared to T2D.


Subject(s)
Diabetes Mellitus, Type 1/epidemiology , Adolescent , Austria/epidemiology , Child , Child, Preschool , Cohort Studies , Diabetes Mellitus, Type 1/history , Female , History, 20th Century , History, 21st Century , Humans , Incidence , Infant , Infant, Newborn , Male , Registries/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...