Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547266

ABSTRACT

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Subject(s)
Cytochrome P-450 Enzyme System , Hordeum , Indole Alkaloids , Multigene Family , Hordeum/genetics , Hordeum/metabolism , Indole Alkaloids/metabolism , Plant Breeding , Oxidation-Reduction , Tryptophan/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Editing , Genes, Plant
2.
Plant Biotechnol J ; 21(2): 331-341, 2023 02.
Article in English | MEDLINE | ID: mdl-36221782

ABSTRACT

The Potyviridae are the largest family of plant-pathogenic viruses. Members of this family are the soil-borne bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), which, upon infection of young winter barley seedlings in autumn, can cause yield losses as high as 50%. Resistance breeding plays a major role in coping with these pathogens. However, some viral strains have overcome the most widely used resistance. Thus, there is a need for novel sources of resistance. In ancient landraces and wild relatives of cultivated barley, alleles of the susceptibility factor PROTEIN DISULFIDE ISOMERASE LIKE 5-1 (PDIL5-1) were identified to confer resistance to all known strains of BaYMV and BaMMV. Although the gene is highly conserved throughout all eukaryotes, barley is thus far the only species for which PDIL5-1-based virus resistance has been reported. Whereas introgression by crossing to the European winter barley breeding pool is tedious, time-consuming and additionally associated with unwanted linkage drag, the present study exemplifies an approach to targeted mutagenesis of two barley cultivars employing CRISPR-associated endonuclease technology to induce site-directed mutations similar to those described for PDIL5-1 alleles that render certain landraces resistant. Homozygous primary mutants were produced in winter barley, and transgene-free homozygous M2 mutants were produced in spring barley. A variety of mutants carrying novel PDIL5-1 alleles were mechanically inoculated with BaMMV, by which all frameshift mutations and certain in-frame mutations were demonstrated to confer resistance to this virus. Under greenhouse conditions, virus-resistant mutants showed no adverse effects in terms of growth and yield.


Subject(s)
Hordeum , Potyviridae , Hordeum/genetics , Protein Disulfide-Isomerases/genetics , Plant Breeding , Potyviridae/genetics , Mutagenesis , Plant Diseases/genetics
3.
Plant Biotechnol J ; 20(1): 37-46, 2022 01.
Article in English | MEDLINE | ID: mdl-34459083

ABSTRACT

High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.


Subject(s)
Hordeum , Abscisic Acid/pharmacology , Germination/genetics , Hordeum/genetics , Mutagenesis/genetics , Plant Dormancy/genetics , Quantitative Trait Loci/genetics , Seeds/genetics
4.
Front Genome Ed ; 3: 784233, 2021.
Article in English | MEDLINE | ID: mdl-34913048

ABSTRACT

The Eukaryotic Translation Initiation Factor 4E (EIF4E) is a well-known susceptibility factor for potyvirus infections in many plant species. The barley yellow mosaic virus disease, caused by the bymoviruses Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), can lead to yield losses of up to 50% in winter barley. In autumn, the roots of young barley plants are infected by the soil-borne plasmodiophoraceous parasite Polymyxa graminis L. that serves as viral vector. Upon viral establishment and systemic spreading into the upper parts of the plants, yellow mosaics occur as first symptoms on leaves. In the further course of plant development, the disease entails leaf necrosis and increased susceptibility to frost damage. Thanks to the rym4 and rym5 allelic variants of the HvEIF4E gene, more than two thirds of current European winter barley cultivars are resistant to BaYMV and BaMMV. However, several strains of BaYMV and BaMMV have already overcome rym4- and rym5-mediated resistance. Accordingly, new resistance-conferring alleles are needed for barley breeding. Therefore, we performed targeted mutagenesis of the EIF4E gene by Cas9 endonuclease in BaMMV/BaYMV-susceptible winter barley cv. "Igri". Small insertions were generated, resulting in a shift of the translational reading frame, thereby causing the loss-of-function of EIF4E. The mutations occurred in the homozygous state already in the primary mutants. Their progeny proved invariably homozygous and fully resistant to mechanical inoculation with BaMMV. EIF4E knockout plants showed normal growth habit and produced grains, yet exhibited a yield penalty.

5.
Breed Sci ; 71(4): 405-416, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34912167

ABSTRACT

The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledge-based improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field.

6.
Methods Mol Biol ; 2287: 199-214, 2021.
Article in English | MEDLINE | ID: mdl-34270031

ABSTRACT

In plant research and breeding, haploid technology is employed upon crossing, induced mutagenesis or genetic engineering to generate populations of meiotic recombinants that are themselves genetically fixed. Thanks to the speed and efficiency in producing true-breeding lines, haploid technology has become a major driver of modern crop improvement. In the present study, we used embryogenic pollen cultures of winter barley ( Hordeum vulgare ) for Cas9 endonuclease-mediated targeted mutagenesis in haploid cells, which facilitates the generation of homozygous primary mutant plants. To this end, microspores were extracted from immature anthers, induced to undergo cell proliferation and embryogenic development in vitro, and were then inoculated with Agrobacterium for the delivery of T-DNAs comprising expression units for Cas9 endonuclease and target gene-specific guide RNAs (gRNAs). Amongst the regenerated plantlets, mutants were identified by PCR amplification of the target regions followed by sequencing of the amplicons. This approach also enabled us to discriminate between homozygous and heterozygous or chimeric mutants. The heritability of induced mutations and their homozygous state were experimentally confirmed by progeny analyses. The major advantage of the method lies in the preferential production of genetically fixed primary mutants, which facilitates immediate phenotypic analyses and, relying on that, a particularly efficient preselection of valuable lines for detailed investigations using their progenies.


Subject(s)
Endonucleases/metabolism , Haploidy , Hordeum/growth & development , Hordeum/genetics , Mutagenesis, Site-Directed/methods , Plant Breeding/methods , RNA, Guide, Kinetoplastida/genetics , CRISPR-Cas Systems , Culture Media , Endonucleases/genetics , Gene Editing , Genetic Engineering , Genome, Plant , Homozygote , Hordeum/embryology , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development
7.
Plant J ; 102(3): 631-642, 2020 05.
Article in English | MEDLINE | ID: mdl-31823436

ABSTRACT

Many plant genomes display high levels of repetitive sequences. The assembly of these complex genomes using short high-throughput sequence reads is still a challenging task. Underestimation or disregard of repeat complexity in these datasets can easily misguide downstream analysis. Detection of repetitive regions by k-mer counting methods has proved to be reliable. Easy-to-use applications utilizing k-mer counting are in high demand, especially in the domain of plants. We present Kmasker plants, a tool that uses k-mer count information as an assistant throughout the analytical workflow of genome data that is provided as a command-line and web-based solution. Beside its core competence to screen and mask repetitive sequences, we have integrated features that enable comparative studies between different cultivars or closely related species and methods that estimate target specificity of guide RNAs for application of site-directed mutagenesis using Cas9 endonuclease. In addition, we have set up a web service for Kmasker plants that maintains pre-computed indices for 10 of the economically most important cultivated plants. Source code for Kmasker plants has been made publically available at https://github.com/tschmutzer/kmasker. The web service is accessible at https://kmasker.ipk-gatersleben.de.


Subject(s)
Genome, Plant/genetics , Algorithms , Gene Editing , Genomics , RNA, Guide, Kinetoplastida/genetics , Sequence Analysis, DNA , Software
8.
Int J Mol Sci ; 20(11)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146387

ABSTRACT

Domestication and breeding have created productive crops that are adapted to the climatic conditions of their growing regions. Initially, this process solely relied on the frequent occurrence of spontaneous mutations and the recombination of resultant gene variants. Later, treatments with ionizing radiation or mutagenic chemicals facilitated dramatically increased mutation rates, which remarkably extended the genetic diversity of crop plants. However, a major drawback of conventionally induced mutagenesis is that genetic alterations occur simultaneously across the whole genome and at very high numbers per individual plant. By contrast, the newly emerging Cas endonuclease technology allows for the induction of mutations at user-defined positions in the plant genome. In fundamental and breeding-oriented research, this opens up unprecedented opportunities for the elucidation of gene functions and the targeted improvement of plant performance. This review covers historical aspects of the development of customizable endonucleases, information on the mechanisms of targeted genome modification, as well as hitherto reported applications of Cas endonuclease technology in barley and wheat that are the agronomically most important members of the temperate cereals. Finally, current trends in the further development of this technology and some ensuing future opportunities for research and biotechnological application are presented.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering/methods , Hordeum/genetics , Plant Breeding/methods , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...