Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Disabil Rehabil Assist Technol ; : 1-9, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688446

ABSTRACT

PURPOSE: Adapted ride-on cars (ROC) are an affordable, power mobility training tool for young children with disabilities. Previous qualitative research has identified environmental factors, such as weather and adequate drive space, as barriers to families' adoption of their ROC. However, we do not currently know the relationship between the built environment and ROC usage. MATERIALS AND METHODS: In our current study, we quantified the driving patterns of 14 children (2.5 ± 1.45 years old, 8 male: 6 female) using ROCs outside and inside of their homes over the course of a year using a custom datalogger and geospatial data. To measure environmental accessibility, we used the AccessScore from Project Sidewalk, an open-source accessibility mapping initiative, and the Walk Score, a measure of neighborhood pedestrian-friendliness. RESULTS: The number of play sessions with the ROC ranged from 1 to 76; 4 participants used it less than 10 times and 4 participants used it more than 50 times. Our findings indicate that more play sessions took place indoors, within the participants' homes. However, when the ROC was used outside the home, children engaged in longer play sessions, actively drove for a larger portion of the session, and covered greater distances. Most children tended to drive their ROCs in close proximity to their homes, with an average maximum distance from home of 181 meters. Most notably, we found that children drove more in pedestrian-friendly neighborhoods and when in proximity to accessible paths. CONCLUSIONS: The accessibility of the built environment is paramount when providing any form of mobility device to a child. Providing an accessible place for a child to move, play, and explore is critical in helping a child and family adopt the mobility device into their daily life.


IMPLICATIONS FOR REHABILITATION: GPS OF ROC USAGERide-on cars provided a novel means for young children with disabilities to explore their home and community environments.Children drove their adapted ride-on cars for longer periods of time outside than inside, and in close proximity to their homes.The identification of an accessible route increased driving frequency and drive session duration. Recommending accessible routes and play locations where families can use their adapted ride-on car may be an important aspect of increasing mobility technology use.Because there were a higher number of play sessions inside, it is important to consider indoor accessibility when designing and implementing mobility technology for young children.

2.
Neuroimage ; 278: 120283, 2023 09.
Article in English | MEDLINE | ID: mdl-37516374

ABSTRACT

Humans are known to have significant and consistent differences in thickness throughout the cortex, with thick outer gyral folds and thin inner sulcal folds. Our previous work has suggested a mechanical basis for this thickness pattern, with the forces generated during cortical folding leading to thick gyri and thin sulci, and shown that cortical thickness varies along a gyral-sulcal spectrum in humans. While other primate species are expected to exhibit similar patterns of cortical thickness, it is currently unknown how these patterns scale across different sizes, forms, and foldedness. Among primates, brains vary enormously from roughly the size of a grape to the size of a grapefruit, and from nearly smooth to dramatically folded; of these, human brains are the largest and most folded. These variations in size and form make comparative neuroanatomy a rich resource for investigating common trends that transcend differences between species. In this study, we examine 12 primate species in order to cover a wide range of sizes and forms, and investigate the scaling of their cortical thickness relative to the surface geometry. The 12 species were selected due to the public availability of either reconstructed surfaces and/or population templates. After obtaining or reconstructing 3D surfaces from publicly available neuroimaging data, we used our surface-based computational pipeline (https://github.com/mholla/curveball) to analyze patterns of cortical thickness and folding with respect to size (total surface area), geometry (i.e. curvature, shape, and sulcal depth), and foldedness (gyrification). In all 12 species, we found consistent cortical thickness variations along a gyral-sulcal spectrum, with convex shapes thicker than concave shapes and saddle shapes in between. Furthermore, we saw an increasing thickness difference between gyri and sulci as brain size increases. Our results suggest a systematic folding mechanism relating local cortical thickness to geometry. Finally, all of our reconstructed surfaces and morphometry data are available for future research in comparative neuroanatomy.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Animals , Humans , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Neuroimaging , Brain , Primates
3.
J Biomech ; 139: 110851, 2022 06.
Article in English | MEDLINE | ID: mdl-34802706

ABSTRACT

The process of gyrification, by which the brain develops the intricate pattern of gyral hills and sulcal valleys, is the result of interactions between biological and mechanical processes during brain development. Researchers have developed a vast array of computational models in order to investigate cortical folding. This review aims to summarize these studies, focusing on five essential elements of the brain that affect development and gyrification and how they are represented in computational models: (i) the constraints of skull, meninges, and cerebrospinal fluid; (ii) heterogeneity of cortical layers and regions; (iii) anisotropic behavior of subcortical fiber tracts; (iv) material properties of brain tissue; and (v) the complex geometry of the brain. Finally, we highlight areas of need for future simulations of brain development.


Subject(s)
Cerebral Cortex , Computer Simulation , Cerebral Cortex/diagnostic imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...