Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
JCI Insight ; 2(17)2017 09 07.
Article in English | MEDLINE | ID: mdl-28878116

ABSTRACT

Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.


Subject(s)
Calcium/metabolism , Cardiomyopathies/prevention & control , Mitochondria, Heart/metabolism , NADPH Oxidase 2/antagonists & inhibitors , Sepsis/complications , Animals , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/etiology , Disease Models, Animal , Echocardiography , Lipopolysaccharides/pharmacology , Membrane Potential, Mitochondrial , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , NADPH Oxidase 2/genetics , Oxidative Phosphorylation , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
2.
Blood ; 130(5): 567-580, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28500171

ABSTRACT

Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.


Subject(s)
Blood Platelets/metabolism , Cell-Derived Microparticles/metabolism , Colonic Neoplasms/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Animals , Cell-Derived Microparticles/transplantation , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Mice , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Receptors, Proteinase-Activated
3.
Cell Rep ; 15(8): 1673-85, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27184846

ABSTRACT

Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.


Subject(s)
Calcium Channels/metabolism , Energy Metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Autophagy , Calcium/metabolism , Calcium Channels/chemistry , Cell Movement , Endothelial Cells/metabolism , Gene Deletion , HEK293 Cells , HeLa Cells , Heart/physiology , Humans , Mice, Knockout , Mitochondrial Proteins/chemistry , Neovascularization, Physiologic , Protein Binding , Protein Domains
4.
Am J Trop Med Hyg ; 95(1): 38-42, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27044567

ABSTRACT

Leptospirosis is mainly considered an occupational disease, prevalent among agriculture, sewage works, forestry, and animal slaughtering populations. However, putative risk to miners and their inclusion in the high-risk leptospirosis group remain in need of rigorous analysis. Therefore, a study was conducted with the objective to assess the leptospirosis seroprevalence among miners of two districts of Tamil Nadu, India. A total of 244 sera samples from Pudukkottai miners (124) and Karur miners (120) were analyzed by microscopic agglutination test. Antibodies to leptospires were detected in 94 samples giving an overall seroprevalence of 38.5%. The seroprevalence was higher among Pudukkottai miners (65.3%) when compared with Karur miners (10.8%). Seroprevalence among control population (13%) was significantly less than that of the Pudukkottai miners marking a possible high-risk population group distinction. Subject sera most commonly reacted with organisms of the serogroup Autumnalis, and the pattern was similar in carrier animals of the study areas. Two leptospires were isolated from kidney samples of rats. The prevalence of Autumnalis among rodents and humans source tracked human leptospirosis among the miners. The study also determined that Pudukkottai miners are subjected to high-risk challenges such as exposure to water bodies on the way to the mines (odds ratio [OR] = 10.6), wet mine areas (OR = 10.6), rat infestation (OR = 4.6), and cattle rearing (OR = 10.4) and are thus frequently exposed to leptospirosis compared with Karur miners. Hence, control strategies targeting these populations will likely to prove to be effective remediation strategies benefiting Pudukkottai miners and workers in similar environments across occupations.


Subject(s)
Leptospira/isolation & purification , Leptospirosis/epidemiology , Miners , Occupational Diseases/epidemiology , Occupational Diseases/microbiology , Adult , Agglutination Tests , Animals , Antibodies, Bacterial/blood , Case-Control Studies , Cattle/microbiology , Dogs/microbiology , Female , Goats/microbiology , Humans , India/epidemiology , Leptospirosis/blood , Leptospirosis/veterinary , Male , Occupational Diseases/blood , Prevalence , Rats/microbiology , Risk Factors , Seroepidemiologic Studies , Young Adult
5.
Arterioscler Thromb Vasc Biol ; 36(6): 1090-100, 2016 06.
Article in English | MEDLINE | ID: mdl-27127201

ABSTRACT

OBJECTIVE: Hyperlipidemia-induced endothelial cell (EC) activation is considered as an initial event responsible for monocyte recruitment in atherogenesis. However, it remains poorly defined what is the mechanism underlying hyperlipidemia-induced EC activation. Here, we tested a novel hypothesis that mitochondrial reactive oxygen species (mtROS) serve as signaling mediators for EC activation in early atherosclerosis. APPROACH AND RESULTS: Metabolomics and transcriptomics analyses revealed that several lysophosphatidylcholine (LPC) species, such as 16:0, 18:0, and 18:1, and their processing enzymes, including Pla2g7 and Pla2g4c, were significantly induced in the aortas of apolipoprotein E knockout mice during early atherosclerosis. Using electron spin resonance and flow cytometry, we found that LPC 16:0, 18:0, and 18:1 induced mtROS in primary human aortic ECs, independently of the activities of nicotinamide adenine dinucleotide phosphate oxidase. Mechanistically, using confocal microscopy and Seahorse XF mitochondrial analyzer, we showed that LPC induced mtROS via unique calcium entry-mediated increase of proton leak and mitochondrial O2 reduction. In addition, we found that mtROS contributed to LPC-induced EC activation by regulating nuclear binding of activator protein-1 and inducing intercellular adhesion molecule-1 gene expression in vitro. Furthermore, we showed that mtROS inhibitor MitoTEMPO suppressed EC activation and aortic monocyte recruitment in apolipoprotein E knockout mice using intravital microscopy and flow cytometry methods. CONCLUSIONS: ATP synthesis-uncoupled, but proton leak-coupled, mtROS increase mediates LPC-induced EC activation during early atherosclerosis. These results indicate that mitochondrial antioxidants are promising therapies for vascular inflammation and cardiovascular diseases.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lysophosphatidylcholines/metabolism , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Antioxidants/pharmacology , Aorta/drug effects , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Endothelial Cells/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Lysophosphatidylcholines/pharmacology , Membrane Potential, Mitochondrial , Metabolomics/methods , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Oxidation-Reduction , Oxidative Stress/drug effects , Phenotype , Time Factors , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
6.
J Mol Cell Cardiol ; 92: 10-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26796036

ABSTRACT

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with ß1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the ß1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Calcium Channels, L-Type/metabolism , Cardiomyopathy, Dilated/metabolism , Heart Failure/metabolism , Receptors, Adrenergic, beta-1/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Action Potentials/drug effects , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Apoptosis Regulatory Proteins/biosynthesis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Excitation Contraction Coupling , Heart Failure/genetics , Heart Failure/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Homeostasis , Humans , Isoproterenol/administration & dosage , Membrane Proteins/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphoproteins/metabolism , RNA, Small Interfering/genetics , Sarcolemma/metabolism
7.
Front Biosci (Landmark Ed) ; 21(1): 178-91, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26709768

ABSTRACT

Caspase-1 activation senses metabolic danger-associated molecular patterns (DAMPs) and mediates the initiation of inflammation in endothelial cells. Here, we examined whether the caspase-1 pathway is responsible for sensing hyperlipidemia as a DAMP in bone marrow (BM)-derived Stem cell antigen-1 positive (Sca-(1+)) stem/progenitor cells and weakening their angiogenic ability. Using biochemical methods, gene knockout, cell therapy and myocardial infarction (MI) models, we had the following findings: 1) Hyperlipidemia induces caspase-1 activity in mouse Sca-(1+) progenitor cells in vivo; 2) Caspase-1 contributes to hyperlipidemia-induced modulation of vascular cell death-related gene expression in vivo; 3) Injection of Sca-1+ progenitor cells from caspase-1(-/-) mice improves endothelial capillary density in heart and decreases cardiomyocyte death in a mouse model of MI; and 4) Caspase-1(-/-) Sca-(1+) progenitor cell therapy improves mouse cardiac function after MI. Our results provide insight on how hyperlipidemia activates caspase-1 in Sca-(1+) progenitor cells, which subsequently weakens Sca-(1+) progenitor cell repair of vasculature injury. These results demonstrate the therapeutic potential of caspase-1 inhibition in improving progenitor cell therapy for MI.


Subject(s)
Blood Vessels/cytology , Caspase 1/metabolism , Hyperlipidemias/metabolism , Stem Cells/cytology , Animals , Caspase 1/genetics , Mice , Mice, Inbred C57BL
8.
Mol Cell ; 60(1): 47-62, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26387735

ABSTRACT

Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens, resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex, however, the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca(2+)- and ROS-induced PTP opening using RNAi-based screening. Loss of SPG7 resulted in higher mitochondrial Ca(2+) retention, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca(2+) and ROS stress. Biochemical analyses revealed that the PTP is a heterooligomeric complex composed of VDAC, SPG7, and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca(2+)- and ROS-induced ΔΨm depolarization and cell death. This study identifies an ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.


Subject(s)
Cyclophilins/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mitochondria/metabolism , Voltage-Dependent Anion Channel 1/metabolism , ATPases Associated with Diverse Cellular Activities , Binding Sites , Calcium/metabolism , Cell Death , Cyclophilins/chemistry , HEK293 Cells , HeLa Cells , Humans , Membrane Potential, Mitochondrial , Metalloendopeptidases/chemistry , Mitochondrial Membranes/metabolism , RNA Interference , Reactive Oxygen Species/metabolism
9.
J Am Coll Cardiol ; 66(2): 139-53, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26160630

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES: This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS: Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS: Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS: Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.


Subject(s)
Cardiomyopathy, Dilated/therapy , Genetic Therapy/methods , Vascular Endothelial Growth Factor B/genetics , Animals , Coronary Vessels , Disease Models, Animal , Dogs , Infusions, Intra-Arterial , Male , Transgenes , Translational Research, Biomedical , Treatment Outcome
10.
Sci Rep ; 5: 11086, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26076991

ABSTRACT

The formation of Aß is directly controlled by the γ-secretase complex and its activator, γ-secretase activating protein (GSAP). GSAP derives from a C-terminal fragment of a larger precursor protein via a caspase-3 mediated cleavage. However, the mechanism regulating this process remains unknown. Here we provide in vitro experimental evidence that 5-Lipoxygenase (5LO) is as an endogenous regulator for GSAP formation, but not for other known γ-secretase modulators, by directly and specifically activating caspase-3. These results were confirmed in vivo by using transgenic mouse models of Alzheimer's disease in which 5LO level and activity were modulated genetically or pharmacologically. Taken together, our findings demonstrate that GSAP cleavage via caspase-3 is regulated and depend upon the availability of 5LO further establishing this protein as an attractive and viable therapeutic target for Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/genetics , Arachidonate 5-Lipoxygenase/genetics , Caspase 3/genetics , Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Arachidonate 5-Lipoxygenase/metabolism , Caspase 3/metabolism , Cell Line , Disease Models, Animal , Gene Expression Regulation , Humans , Lipoxygenase Inhibitors/pharmacology , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Proteins/metabolism , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Transfection , Transgenes
11.
Sci Signal ; 8(366): ra23, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25737585

ABSTRACT

Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.


Subject(s)
Avian Proteins/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Mitochondrial Proteins/metabolism , Animals , Avian Proteins/genetics , Calcium Channels/genetics , Cell Line , Chickens , Cyclic AMP Response Element-Binding Protein/genetics , Endoplasmic Reticulum , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , ORAI1 Protein , Stromal Interaction Molecule 1
12.
Am J Physiol Heart Circ Physiol ; 308(6): H637-50, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25576627

ABSTRACT

Ubiquitously expressed Trpm2 channel limits oxidative stress and preserves mitochondrial function. We first demonstrated that intracellular Ca(2+) concentration increase after Trpm2 activation was due to direct Ca(2+) influx and not indirectly via reverse Na(+)/Ca(2+) exchange. To elucidate whether Ca(2+) entry via Trpm2 is required to maintain cellular bioenergetics, we injected adenovirus expressing green fluorescent protein (GFP), wild-type (WT) Trpm2, and loss-of-function (E960D) Trpm2 mutant into left ventricles of global Trpm2 knockout (gKO) or WT hearts. Five days post-injection, gKO-GFP heart slices had higher reactive oxygen species (ROS) levels but lower oxygen consumption rate (OCR) than WT-GFP heart slices. Trpm2 but not E960D decreased ROS and restored OCR in gKO hearts back to normal levels. In gKO myocytes expressing Trpm2 or its mutants, Trpm2 but not E960D reduced the elevated mitochondrial superoxide (O2(.-)) levels in gKO myocytes. After hypoxia-reoxygenation (H/R), Trpm2 but not E906D or P1018L (inactivates Trpm2 current) lowered O2(.-) levels in gKO myocytes and only in the presence of extracellular Ca(2+), indicating sustained Ca(2+) entry is necessary for Trpm2-mediated preservation of mitochondrial function. After ischemic-reperfusion (I/R), cardiac-specific Trpm2 KO hearts exhibited lower maximal first time derivative of LV pressure rise (+dP/dt) than WT hearts in vivo. After doxorubicin treatment, Trpm2 KO mice had worse survival and lower +dP/dt. We conclude 1) cardiac Trpm2-mediated Ca(2+) influx is necessary to maintain mitochondrial function and protect against H/R injury; 2) Ca(2+) influx via cardiac Trpm2 confers protection against H/R and I/R injury by reducing mitochondrial oxidants; and 3) Trpm2 confers protection in doxorubicin cardiomyopathy.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cardiomyopathies/prevention & control , Energy Metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , TRPM Cation Channels/metabolism , Action Potentials , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Disease Models, Animal , Doxorubicin , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Mutation , Myocardial Contraction , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Oxidative Stress , Oxygen Consumption , Reactive Oxygen Species/metabolism , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , Time Factors , Transfection , Ventricular Function, Left , Ventricular Pressure
13.
Biol Psychiatry ; 77(8): 720-8, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25052851

ABSTRACT

BACKGROUND: A major feature of Alzheimer's disease (AD) is the accumulation of amyloid-beta (Aß), whose formation is regulated by the gamma-secretase complex and its activating protein (also known as GSAP). Because GSAP interacts with gamma-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aß therapy. However, despite much interest in this protein, the mechanisms involved in its neurobiology are unknown. METHODS: Postmortem brain tissue samples from AD patients, transgenic mouse models of AD, and neuronal cells were used to investigate the molecular mechanism involved in GSAP formation and subsequent amyloidogenesis. RESULTS: We identified a caspase-3 processing domain in the GSAP sequence and provide experimental evidence that this caspase is essential for GSAP activation and biogenesis of Aß peptides. Furthermore, we demonstrated that caspase-3-dependent GSAP formation occurs in brains of individuals with AD and two different mouse models of AD and that the process is biologically relevant because its pharmacological blockade reduces Aß pathology in vivo. CONCLUSIONS: Our data, by identifying caspase-3 as the endogenous modulator of GSAP and Aß production, establish caspase-3 as a novel, attractive and viable Aß-lowering therapeutic target for AD.


Subject(s)
Alzheimer Disease/pathology , Caspase 3/metabolism , Frontal Lobe/metabolism , Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Caspase 3/genetics , Cell Line, Tumor , Female , Gene Expression Regulation/genetics , Humans , Immunoprecipitation , Male , Mice , Mice, Transgenic , Mutagenesis , Mutation , Neuroblastoma/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transfection
14.
J Neurochem ; 133(3): 432-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25533523

ABSTRACT

A major hallmark feature of Alzheimer's disease is the accumulation of amyloid ß (Aß), whose formation is regulated by the γ-secretase complex and its activating protein (also known as γ-secretase activating protein, or GSAP). Because GSAP interacts with the γ-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aß therapy. GSAP derives from a C-terminal fragment of a larger precursor protein of 98 kDa via a caspase 3-mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half-life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aß levels and γ-secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin-proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti-Aß therapeutic approach in Alzheimer's disease. The GSAP derives from a precursor via a caspase 3-mediated cleavage, is up-regulated in Alzheimer's disease brains and facilitates Aß production by interacting directly with the γ-secretase complex. Here, we demonstrate that GSAP is ubiquitinated and then selectively degraded via the proteasome system but not the calpains or lysosome pathways. These findings provide further evidence for the involvement of the proteasome system in the regulation of amyloid beta (Aß) precursor protein metabolism and Aß formation. AICD, APP intracellular domain; APP, amyloid precursor protein; ATP, adenosine triphosphate; CTF-α, alpha-C-terminal fragment; CTF-ß, beta-C-terminal fragment; GSAP, γ-secretase activating protein; Ub, ubiquitin.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Signal Transduction/physiology , Ubiquitin/metabolism , Cell Line, Tumor , Humans
15.
J Biol Chem ; 289(52): 36284-302, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25391657

ABSTRACT

The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neuroblastoma/metabolism , TRPM Cation Channels/physiology , Adrenal Glands/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Autophagy , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Down-Regulation , Doxorubicin/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Membrane Potential, Mitochondrial , Membrane Potentials , Mice, Nude , Neoplasm Transplantation , Neuroblastoma/pathology , Protein Isoforms/physiology , Protein Transport , Tumor Burden
16.
FASEB J ; 28(11): 4936-49, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25077561

ABSTRACT

Dysregulation of mitochondrial Ca(2+)-dependent bioenergetics has been implicated in various pathophysiological settings, including neurodegeneration and myocardial infarction. Although mitochondrial Ca(2+) transport has been characterized, and several molecules, including LETM1, have been identified, the functional role of LETM1-mediated Ca(2+) transport remains unresolved. This study examines LETM1-mediated mitochondrial Ca(2+) transport and bioenergetics in multiple cell types, including fibroblasts derived from patients with Wolf-Hirschhorn syndrome (WHS). The results show that both mitochondrial Ca(2+) influx and efflux rates are impaired in LETM1 knockdown, and similar phenotypes were observed in ΔEF hand, (D676A D688K)LETM1 mutant-overexpressed cells, and in cells derived from patients with WHS. Although LETM1 levels were lower in WHS-derived fibroblasts, the mitochondrial Ca(2+) uniporter components MCU, MCUR1, and MICU1 remain unaltered. In addition, the MCU mitoplast patch-clamp current (IMCU) was largely unaffected in LETM1-knockdown cells. Silencing of LETM1 also impaired basal mitochondrial oxygen consumption, possibly via complex IV inactivation and ATP production. Remarkably, LETM1 knockdown also resulted in increased reactive oxygen species production. Further, LETM1 silencing promoted AMPK activation, autophagy, and cell cycle arrest. Reconstitution of LETM1 or antioxidant overexpression rescued mitochondrial Ca(2+) transport and bioenergetics. These findings reveal the role of LETM1-dependent mitochondrial Ca(2+) flux in shaping cellular bioenergetics.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Cation Transport Proteins/metabolism , Energy Metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Animals , HeLa Cells , Humans , Mice, Inbred C57BL , Mitochondria/metabolism , Rats
17.
Biochemistry ; 53(30): 4990-9, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25033246

ABSTRACT

The therapeutic and psychoactive properties of cannabinoids have long been recognized. The type 2 receptor for cannabinoids (CB2) has emerged as an important therapeutic target in several pathologies, as it mediates beneficial effects of cannabinoids while having little if any psychotropic activity. Difficulties associated with the development of CB2-based therapeutic agents have been related to its intricate pharmacology, including the species specificity and functional selectivity of the CB2-initiated responses. We postulated that a plasmalemmal or subcellular location of the receptor may contribute to the differential signaling pathways initiated by its activation. To differentiate between these two, we used extracellular and intracellular administration of CB2 ligands and concurrent calcium imaging in CB2-expressing U2OS cells. We found that extracellular administration of anandamide was ineffective, whereas 2-arachidonoyl glycerol (2-AG) and WIN55,212-2 triggered delayed, CB2-dependent Ca(2+) responses that were Gq protein-mediated. When microinjected, all agonists elicited fast, transient, and dose-dependent elevations in intracellular Ca(2+) concentration upon activation of Gq-coupled CB2 receptors. The CB2 dependency was confirmed by the sensitivity to AM630, a selective CB2 antagonist, and by the unresponsiveness of untransfected U2OS cells to 2-AG, anandamide, or WIN55,212-2. Moreover, we provide functional and morphological evidence that CB2 receptors are localized at the endolysosomes, while their activation releases Ca(2+) from inositol 1,4,5-trisphosphate-sensitive- and acidic-like Ca(2+) stores. Our results support the functionality of intracellular CB2 receptors and their ability to couple to Gq and elicit Ca(2+) signaling. These findings add further complexity to CB2 receptor pharmacology and argue for careful consideration of receptor localization in the development of CB2-based therapeutic agents.


Subject(s)
Calcium Signaling/physiology , Intracellular Membranes/chemistry , Receptor, Cannabinoid, CB2/chemistry , Benzoxazines/metabolism , Benzoxazines/pharmacology , Calcium Signaling/drug effects , Cell Line , Humans , Intracellular Membranes/metabolism , Molecular Sequence Data , Morpholines/metabolism , Morpholines/pharmacology , Naphthalenes/metabolism , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism
18.
Circ Res ; 115(6): 567-580, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25047165

ABSTRACT

RATIONALE: The cellular and molecular basis for post-myocardial infarction (MI) structural and functional remodeling is not well understood. OBJECTIVE: Our aim was to determine if Ca2+ influx through transient receptor potential canonical (TRPC) channels contributes to post-MI structural and functional remodeling. METHODS AND RESULTS: TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte-specific expression of a dominant-negative (loss-of-function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival in mice. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 overexpression in adult feline myocytes induced calcineurin (Cn)-nuclear factor of activated T-cells (NFAT)-mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in adult feline myocytes increased rested state contractions and increased spontaneous sarcoplasmic reticulum Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady-state pacing, likely because of enhanced sarcoplasmic reticulum Ca2+ leak. CONCLUSIONS: Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function.


Subject(s)
Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Transient Receptor Potential Channels/physiology , Ventricular Remodeling/physiology , Animals , Calcium/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cats , Cells, Cultured , Disease Models, Animal , Excitation Contraction Coupling/physiology , Mice , Myocardial Contraction/physiology , Sarcoplasmic Reticulum/metabolism
19.
J Biol Chem ; 289(11): 7615-29, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24492610

ABSTRACT

Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.


Subject(s)
Mitochondria/metabolism , Reperfusion Injury/pathology , TRPM Cation Channels/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Electron Transport , Electrophysiology , HEK293 Cells , Heart/physiopathology , Heart Ventricles/metabolism , Humans , Male , Membrane Potentials , Mice , Mice, Knockout , Muscle Cells/cytology , Myocardial Ischemia/pathology , Oxygen/chemistry , Oxygen Consumption , Proteomics , Reactive Oxygen Species/metabolism
20.
Am J Physiol Cell Physiol ; 306(8): C736-44, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24401846

ABSTRACT

The existence of a local renin-angiotensin system (RAS) in neurons was first postulated 40 years ago. Further studies indicated intraneuronal generation of ANG II. However, the function and signaling mechanisms of intraneuronal ANG II remained elusive. Since ANG II type 1 receptor (AT1R) is the major type of receptor mediating the effects of ANG II, we used intracellular microinjection and concurrent Ca(2+) and voltage imaging to examine the functionality of intracellular AT1R in neurons. We show that intracellular administration of ANG II produces a dose-dependent elevation of cytosolic Ca(2+) concentration ([Ca(2+)]i) in hypothalamic neurons that is sensitive to AT1R antagonism. Endolysosomal, but not Golgi apparatus, disruption prevents the effect of microinjected ANG II on [Ca(2+)]i. Additionally, the ANG II-induced Ca(2+) response is dependent on microautophagy and sensitive to inhibition of PLC or antagonism of inositol 1,4,5-trisphosphate receptors. Furthermore, intracellular application of ANG II produces AT1R-mediated depolarization of hypothalamic neurons, which is dependent on [Ca(2+)]i increase and on cation influx via transient receptor potential canonical channels. In summary, we provide evidence that intracellular ANG II activates endolysosomal AT1Rs in hypothalamic neurons. Our results point to the functionality of a novel intraneuronal angiotensinergic pathway, extending the current understanding of intracrine ANG II signaling.


Subject(s)
Angiotensin II/metabolism , Neurons/physiology , Signal Transduction/physiology , Angiotensin II/administration & dosage , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Animals, Newborn , Calcium/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Gene Expression Regulation , Humans , Hypothalamus/cytology , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Microinjections , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/drug effects , Receptor, Angiotensin, Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...