Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Trends Cancer ; 10(3): 182-184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290969

ABSTRACT

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.


Subject(s)
Neoplasms , Animals , Swine , Humans , Disease Models, Animal , Animals, Genetically Modified , Neoplasms/drug therapy , Neoplasms/genetics
2.
EJNMMI Res ; 13(1): 67, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37438543

ABSTRACT

BACKGROUND: CXCR3 is a chemokine receptor and is expressed in innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, detection of CXCR3 by positron emission tomography (PET) radiotracer can be a useful tool for detecting the development of atherosclerosis in a noninvasive manner. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. RESULTS: The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured Ki values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [18F]1 was prepared by a two-step radiosynthesis with a decay-corrected radiochemical yield of 13 ± 2%, radiochemical purity > 99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (n = 6). The baseline studies showed that [18F]1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue in Apolipoprotein E (ApoE) knockout (KO) mice fed with a high-fat diet over 12 weeks. The uptake of [18F]1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [18F]1 in the abdominal aorta of C57BL/6 control mice fed with a normal diet were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. Immunohistochemistry studies demonstrated that [18F]1-positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [18F]1, and their CXCR3 expressions were minimal. CONCLUSION: [18F]1 was synthesized with good radiochemical yield and high radiochemical purity. In PET imaging studies, [18F]1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [18F]1 visualized CXCR3 expression in different regions in mice aligned with the tissue histology studies. Taken together, [18F]1 is a potential PET radiotracer for imaging CXCR3 in atherosclerosis.

3.
Res Sq ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865232

ABSTRACT

Background: CXCR3 is a chemokine receptor and is expressed on innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, the detection of CXCR3 by positron emission tomography (PET) radiotracer may be a useful tool to detect atherosclerosis development noninvasively. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18 F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. Methods: The reference standard ( S )-2-(5-chloro-6-(4-(1-(4-chloro-2-fluorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)pyridin-3-yl)-1,3,4-oxadiazole ( 1 ) and its corresponding precursor 9 were synthesized using organic syntheses. The radiotracer [ 18 F] 1 was prepared in one-pot, two-step synthesis via aromatic 18 F-substitution followed by reductive amination. Cell binding assays were conducted using 1 , [ 125 I]CXCL10, and CXCR3A- and CXCR3B-transfected human embryonic kidney (HEK) 293 cells. Dynamic PET imaging studies over 90 min were performed on C57BL/6 and apolipoprotein E (ApoE) knockout (KO) mice that were subjected to a normal and high-fat diet for 12 weeks, respectively. Blocking studies were conducted with preadministration of the hydrochloride salt of 1 (5 mg/kg) to assess the binding specificity. Time-activity curves (TACs) for [ 18 F] 1 in both mice were used to extract standard uptake values (SUVs). Biodistribution studies were performed on C57BL/6 mice, and the distribution of CXCR3 in the abdominal aorta of ApoE KO mice was assessed by immunohistochemistry (IHC). Results: The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured K i values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [ 18 F] 1 was prepared with decay-corrected radiochemical yield (RCY) of 13 ± 2%, radiochemical purity (RCP) >99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (EOS) ( n =6). The baseline studies showed that [ 18 F] 1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue (BAT) in ApoE KO mice. The uptake of [ 18 F] 1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [ 18 F] 1 in the abdominal aorta of C57BL/6 mice were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. IHC studies demonstrated that [ 18 F] 1 -positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [ 18 F] 1 , and their CXCR3 expressions were minimal. Conclusion: The novel radiotracer, [ 18 F] 1 was synthesized with good RCY and high RCP. In PET imaging studies, [ 18 F] 1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [ 18 F] 1 visualized CXCR3 expression in different regions in mice is in line with the tissue histology studies. Taken together, [ 18 F] 1 is a potential PET radiotracer for the imaging of CXCR3 in atherosclerosis.

4.
Health Phys ; 124(2): 106-112, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36472527

ABSTRACT

ABSTRACT: The performance of several gamma detectors was investigated for emergency urine bioassay screening of two radionuclides of concern: 131 I and 137 Cs. Unspiked artificial urine samples were measured for 10 min each on four different gamma detectors: 80% relative efficiency high-purity Ge detector in standard shielding, 102% low-background high-purity Ge detector equipped with top muon shield, 78% high-purity Ge well detector in standard shielding, and 4″ × 4″ NaI well detector in standard shielding. The measured gamma spectra were analyzed in two ways: (1) for the 364-keV peak region of 131 I and 662-keV peak region of 137 Cs and (2) for the total counts in the full energy spectrum (50-2,048 keV). The results were analyzed using the principles of signal detection theory according to the Currie's formalism extended by a complete uncertainty propagation. This enabled calculation of the detection capability in terms of detection limit (Bq L -1 ) of urine, the latter referred to as minimum detectable activity. The NaI well detector had the lowest minimum detectable activities for total spectra, whereas the high-purity Ge well detector had the lowest peak minimum detectable activity values. Minimum detectable inhalation and ingestion intakes from urine bioassay were calculated from the minimum detectable activity values for urine collection 1 d, 1 wk, and 1 mo past the initial intake. The calculated intakes were compared with annual limits on intake. The results are interpreted with respect to a large-scale radiological emergency response.


Subject(s)
Germanium , Radioactivity , Humans , Iodides , Sodium Iodide , Limit of Detection , Cesium Radioisotopes , Iodine Radioisotopes , Sodium
5.
Bioconjug Chem ; 32(7): 1364-1373, 2021 07 21.
Article in English | MEDLINE | ID: mdl-33423467

ABSTRACT

Trithiol chelates are suitable for labeling radioarsenic (72As: 2.49 MeV ß+, 26 h; 77As: 0.683 MeV ß-, 38.8 h) to form potential theranostic radiopharmaceuticals for positron emission tomography (PET) imaging and therapy. A trithiol(b)-(Ser)2-RM2 bioconjugate and its arsenic complex were synthesized and characterized. The trithiol(b)-(Ser)2-RM2 bioconjugate was radiolabeled with no-carrier-added 77As in over 95% radiochemical yield and was stable for over 48 h, and in vitro IC50 cell binding studies of [77As]As-trithiol(b)-(Ser)2-RM2 in PC-3 cells demonstrated high affinity for the gastrin-releasing peptide (GRP) receptor (low nanomolar range). Limited biodistribution studies in normal mice were performed with HPLC purified 77As-trithiol(b)-(Ser)2-RM2 demonstrating both pancreatic uptake and hepatobiliary clearance.


Subject(s)
Arsenic/chemistry , Chelating Agents/chemistry , Radiopharmaceuticals/chemistry , Sulfhydryl Compounds/chemistry , Animals , Chelating Agents/pharmacokinetics , Humans , Inhibitory Concentration 50 , Ligands , Male , Mice , PC-3 Cells , Positron-Emission Tomography/methods , Precision Medicine , Radiopharmaceuticals/pharmacokinetics , Receptors, Bombesin/chemistry , Tissue Distribution
6.
Appl Radiat Isot ; 143: 113-122, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30408634

ABSTRACT

Positron-emitting 72As is the PET imaging counterpart for beta-emitting 77As. Its parent, no carrier added (n.c.a.) 72Se, was produced for a 72Se/72As generator by irradiating an enriched 7°Ge metal-graphite target via the 70Ge(α, 2 n)72Se reaction. Target dissolution used a fast, environmentally friendly method with 93% radioactivity recovery. Chromatographic parameters of the 72Se/72As generator were evaluated, the eluted n.c.a. 72As was characterized with a phantom imaging study, and the previously reported trithiol and aryl-dithiol ligand systems were radiolabeled with the separated n.c.a. 72As in high yield.


Subject(s)
Arsenic/isolation & purification , Radioisotopes/isolation & purification , Radionuclide Generators , Radiopharmaceuticals/isolation & purification , Selenium Radioisotopes/isolation & purification , Germanium/chemistry , Germanium/isolation & purification , Germanium/radiation effects , Humans , Isotopes/chemistry , Isotopes/isolation & purification , Isotopes/radiation effects , Phantoms, Imaging , Positron-Emission Tomography , Radioligand Assay , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry
7.
Nucl Med Biol ; 61: 1-10, 2018 06.
Article in English | MEDLINE | ID: mdl-29571038

ABSTRACT

INTRODUCTION: Trithiol chelates are suitable for labeling radioarsenic (72As: 2.49 MeV ß+, 26 h; 77As: 0.683 MeV ß-, 38.8 h) to form potential theranostic radiopharmaceuticals for PET imaging and therapy. To investigate the in vivo stability of trithiol chelates complexed with no carrier added (nca) radioarsenic, a bifunctional trithiol chelate was developed, and conjugated to bombesin(7-14)NH2 as a model peptide. METHODS: A trithiol-BBN(7-14)NH2 bioconjugate and its arsenic complex were synthesized and characterized. The trithiol-BBN(7-14)NH2 conjugate was radiolabeled with 77As, its in vitro stability assessed, and biodistribution studies were performed in CF-1 normal mice of free [77As]arsenate and 77As-trithiol- BBN(7-14)NH2. RESULTS: The trithiol-BBN(7-14)NH2 conjugate, its precursors and its As-trithiol-BBN(7-14)NH2 complex were fully characterized. Radiolabeling studies with nca 77As resulted in over 90% radiochemical yield of 77As-trithiol-BBN, which was stable for over 48 h. Biodistribution studies were performed with both free [77As]arsenate and Sep-Pak® purified 77As-trithiol-BBN(7-14)NH2. Compared to the fast renal clearance of free [77As]arsenate, 77As-trithiol-BBN(7-14)NH2 demonstrated increased retention with clearance mainly through the hepatobiliary system, consistent with the lipophilicity of the 77As-trithiol-BBN(714)NH2 complex. CONCLUSION: The combined in vitro stability of 77As-trithiol-BBN(7-14)NH2 and the biodistribution results demonstrate its high in vivo stability, making the trithiol a promising platform for developing radioarsenic-based theranostic radiopharmaceuticals.


Subject(s)
Arsenic/chemistry , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/therapeutic use , Animals , Bombesin/chemistry , Drug Stability , Isotope Labeling , Male , Mice , Models, Molecular , Molecular Conformation , Radiochemistry , Sulfhydryl Compounds/pharmacokinetics , Tissue Distribution
8.
Dalton Trans ; 46(42): 14677-14690, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-28951905

ABSTRACT

The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of 72,77As, 186,188Re and 105Rh are discussed.


Subject(s)
Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Arsenic/chemistry , Models, Molecular , Molecular Conformation , Radiochemistry , Rhenium/chemistry , Rhodium/chemistry
9.
Nucl Med Biol ; 43(12): 802-811, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27694058

ABSTRACT

INTRODUCTION: Targeted radiotherapy using the bifunctional chelate approach with 186/188Re(V) is challenging because of the susceptibility of monooxorhenium(V)-based complexes to oxidize in vivo at high dilution. A monoamine-monoamide dithiol (MAMA)-based bifunctional chelating agent was evaluated with both rhenium and technetium to determine its utility for in vivo applications. METHODS: A 222-MAMA chelator, 222-MAMA(N-6-Ahx-OEt) bifunctional chelator, and 222-MAMA(N-6-Ahx-BBN(7-14)NH2) were synthesized, complexed with rhenium, radiolabeled with 99mTc and 186Re (carrier added and no carrier added), and evaluated in initial biological distribution studies. RESULTS: An IC50 value of 2.0±0.7nM for natReO-222-MAMA(N-6-Ahx-BBN(7-14)NH2) compared to [125I]-Tyr4-BBN(NH2) was determined through competitive cell binding assays with PC-3 tumor cells. In vivo evaluation of the no-carrier added 99mTc-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed little gastric uptake and blockable pancreatic uptake in normal mice. CONCLUSIONS: The 186ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed stability in biological media, which indicates that the 222-N2S2 chelator is appropriate for chelating 186/188Re in radiopharmaceuticals involving peptides. Additionally, the in vitro cell studies showed that the ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex (macroscopically) bound to PC3-tumor cell surface receptors with high affinity. The 99mTc analog was stable in vivo and exhibited pancreatic uptake in mice that was blockable, indicating BB2r targeting.


Subject(s)
Amides/chemistry , Amines/chemistry , Chelating Agents/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Rhenium/chemistry , Toluene/analogs & derivatives , Animals , Cell Line, Tumor , Chemistry Techniques, Synthetic , Drug Stability , Ligands , Mice , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacokinetics , Tissue Distribution , Toluene/chemistry
10.
Nucl Med Biol ; 42(2): 99-108, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25459113

ABSTRACT

INTRODUCTION: Here we present the metallation, characterization, in vivo and in vitro evaluations of dual-targeting, peptide-based radiopharmaceuticals with utility for imaging and potentially treating prostate tumors by virtue of their ability to target the αVß3 integrin or the gastrin releasing peptide receptor (GRPr). METHODS: [RGD-Glu-6Ahx-RM2] (RGD: Arg-Gly-Asp; Glu: glutamic acid; 6-Ahx: 6-amino hexanoic acid; RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2)) was conjugated to a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bifunctional chelator (BFCA) purified via reversed-phase high-performance liquid chromatography (RP-HPLC), characterized by electrospray ionization-mass spectrometry (ESI-MS), and radiolabeled with (111)In or (177)Lu. Natural-metallated compounds were assessed for binding affinity for the αVß3 integrin or GRPr in human glioblastoma U87-MG and prostate PC-3 cell lines and stability prior to in vivo evaluation in normal CF-1 mice and SCID mice xenografted with PC-3 cells. RESULTS: Competitive displacement binding assays with PC-3 and U87-MG cells revealed high to moderate binding affinity for the GRPr or the αVß3 integrin (IC50 range of 5.39±1.37 nM to 9.26±0.00 nM in PC-3 cells, and a range of 255±47 nM to 321±85 nM in U87-MG cells). Biodistribution studies indicated high tumor uptake in PC-3 tumor-bearing mice (average of 7.40±0.53% ID/g at 1h post-intravenous injection) and prolonged retention of tracer (mean of 4.41±0.91% ID/g at 24h post-intravenous injection). Blocking assays corroborated the specificity of radioconjugates for each target. Micro-single photon emission computed tomography (microSPECT) confirmed favorable radiouptake profiles in xenografted mice at 20h post-injection. CONCLUSIONS: [RGD-Glu-[(111)In-DO3A]-6-Ahx-RM2] and [RGD-Glu-[(177)Lu- DO3A]-6-Ahx-RM2] show favorable pharmacokinetic and radiouptake profiles, meriting continued evaluation for molecular imaging in murine U87-MG/PC-3 xenograft models and radiotherapy studies with (177)Lu and (90)Y conjugates. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: These heterovalent, peptide-targeting ligands perform comparably with many mono- and multivalent conjugates with the potential benefit of increased sensitivity for detecting cancer cells exhibiting differential expression of target receptors.


Subject(s)
Bombesin/therapeutic use , Heterocyclic Compounds, 1-Ring/chemistry , Oligopeptides/chemistry , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/radiotherapy , Animals , Bombesin/pharmacokinetics , Bombesin/pharmacology , Cell Line, Tumor , Copper Radioisotopes/therapeutic use , Humans , Integrin alphaVbeta3/antagonists & inhibitors , Male , Mice , Prostatic Neoplasms/pathology , Receptors, Bombesin/antagonists & inhibitors , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , X-Ray Microtomography
11.
Bioconjug Chem ; 25(8): 1565-79, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25020251

ABSTRACT

The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.


Subject(s)
Bombesin/chemistry , Bombesin/metabolism , Clathrin/metabolism , Endocytosis , Gold/chemistry , Nanostructures , Cell Line, Tumor , Endosomes/metabolism , Humans , Lysosomes/metabolism
12.
Nucl Med Biol ; 41(4): 355-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24508213

ABSTRACT

UNLABELLED: Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin, a GRPr-specific peptide targeting probe. METHODS: The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with (64)CuCl2 and (nat)CuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). RESULTS: Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-((nat)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18h p.i. with collateral, background radiation also being observed in non-target tissue. CONCLUSIONS: DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] targeting vector, as described herein, is the first example of a dual GRPr-/PSMA-targeting radioligand for molecular of imaging prostate tumors. Detailed in vitro studies and microPET molecular imaging investigations of [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2 in tumor-bearing mice indicate that further studies are necessary to optimize uptake and retention of tracer in GRPr- and PSMA-positive tissues.


Subject(s)
Antigens, Surface/metabolism , Biomarkers, Tumor/metabolism , Bombesin/metabolism , Copper Radioisotopes , Glutamate Carboxypeptidase II/metabolism , Receptors, Bombesin/metabolism , Acetates/chemistry , Amino Acids, Neutral/chemistry , Aminocaproic Acid/chemistry , Animals , Biological Transport , Bombesin/chemical synthesis , Bombesin/chemistry , Cell Line, Tumor , Chemistry Techniques, Synthetic , Female , Glutarates/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Male , Mice , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Radiochemistry , Urea/analogs & derivatives , Urea/chemistry
13.
Nucl Med Biol ; 41(2): 133-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24480266

ABSTRACT

INTRODUCTION: In the present study, we describe a (64)Cu-radiolabeled heterodimeric peptide conjugate for dual αvß3/GRPr (αvß3 integrin/gastrin releasing peptide receptor) targeting of the form [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] (RGD: the amino acid sequence [Arg-Gly-Asp], a nonregulatory peptide used for αvß3 integrin receptor targeting; Glu: glutamic acid; NO2A: 1,4,7-triazacyclononane-1,4-diacetic acid; 6-Ahx: 6-amino hexanoic acid; and RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), an antagonist analogue of bombesin (BBN) peptide used for GRPr targeting). METHODS: RGD-Glu-6Ahx-RM2] was conjugated to a NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) complexing agent to produce [RGD-Glu-[NO2A]-6-Ahx-RM2], which was purified by reversed-phase high-performance liquid chromatography (RP-HPLC) and characterized by electrospray ionization-mass spectrometry (ESI-MS). Radiolabeling of the conjugate with (64)Cu produced [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2 in high radiochemical yield (≥95%). In vivo behavior of the radiolabeled peptide conjugate was investigated in normal CF-1 mice and in the PC-3 human prostate cancer experimental model. RESULTS: A competitive displacement receptor binding assay in human prostate PC-3 cells using (125)I-[Tyr(4)]BBN as the radioligand showed high binding affinity of [RGD-Glu-[(nat)Cu-NO2A]-6-Ahx-RM2] conjugate for the GRPr (3.09±0.34 nM). A similar assay in human, glioblastoma U87-MG cells using (125)I-Echistatin as the radioligand indicated a moderate receptor-binding affinity for the αvß3 integrin (518±37.5 nM). In vivo studies of [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] showed high accumulation (4.86±1.01 %ID/g, 1h post-intravenous injection (p.i.)) and prolonged retention (4.26±1.23 %ID/g, 24h p.i.) of tracer in PC-3 tumor-bearing mice. Micro-positron emission tomography (microPET) molecular imaging studies produced high-quality, high contrast images in PC-3 tumor-bearing mice at 4h p.i. CONCLUSIONS: The favorable pharmacokinetics and enhanced tumor uptake of (64)Cu-NOTA-RGD-Glu-6Ahx-RM2 warrant further investigations for dual integrin and GRPr-positive tumor imaging and possible radiotherapy.


Subject(s)
Copper Radioisotopes , Dimerization , Integrin alphaVbeta3/metabolism , Oligopeptides , Positron-Emission Tomography/methods , Prostatic Neoplasms/pathology , Receptors, Bombesin/antagonists & inhibitors , Aminocaproic Acid , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , Heterocyclic Compounds/chemistry , Heterocyclic Compounds, 1-Ring , Humans , Male , Mice , Oligopeptides/chemistry , Oligopeptides/metabolism , Oligopeptides/pharmacokinetics , Prostatic Neoplasms/diagnostic imaging , Radioactive Tracers , Receptors, Bombesin/metabolism
14.
Prostate ; 73(8): 842-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23280511

ABSTRACT

BACKGROUND: Development of high affinity and specificity molecular imaging probes that increase accuracy for early detection of lymph node (LN) metastases is important for improving survivorship in prostate cancer. We evaluated the specificity, sensitivity, and accuracy of fluorescence-labeled bombesin (BBN) peptides to detect LN and systematic metastases in orthotopic mouse models bearing gastrin releasing peptide receptor (GRPR)-positive human prostate cancer. METHODS: PC-3 cells were orthotopically implanted in severe combined immunedeficient or thymic nude (nu/nu) male mice. Tumor growth was monitored using magnetic resonance imaging. Alexa Fluor 680 conjugated BBN[7-14]NH2 (AF680-BBN) peptides were administered intravenously at 4-7 weeks post-tumor-implantation. Near-infrared fluorescence (NIRF) imaging was performed for up to 6 hr post-injection. The imaging sensitivity and specificity were assessed by co-registration of AF680-BBN NIRF imaging and luciferase bioluminescence imaging of the PC-3/Luc+ orthotopic mouse model. RESULTS: AF680-BBN showed a high binding affinity and selectivity to GRPR-positive cancer in vitro and in vivo. LN and peritoneal metastases were detected by NIRF imaging, and confirmed by histopathology. Tumor-to-muscle (T/M) ratio was the highest at 2-hr post-injection (4.12 ± 1.77). Blocking experiments, using unlabeled BBN as the inhibiting agent, significantly reduced the T/M ratio (1.64 ± 0.21, P = 0.02). AF680-BBN NIRF imaging had a sensitivity of 89.4%, specificity of 92.9%, and accuracy of 90.2% for the detection of metastases in mice. CONCLUSIONS: [corrected] The studies suggest the potential of use and development of NIR-fluorescent BBN probes as site-directed agents to help improve the current detection and LN staging accuracy in prostate cancer.


Subject(s)
Bombesin/analogs & derivatives , Fluorescent Dyes , Lymph Nodes/metabolism , Peptide Fragments , Prostatic Neoplasms/metabolism , Receptors, Bombesin/metabolism , Animals , Cell Line, Tumor , Histocytochemistry , Humans , Lymph Nodes/pathology , Male , Mice , Mice, Nude , Mice, SCID , Microscopy, Fluorescence , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Reproducibility of Results , Sensitivity and Specificity
15.
In Vivo ; 26(4): 583-92, 2012.
Article in English | MEDLINE | ID: mdl-22773572

ABSTRACT

AIM: The present study adds scientific support to the growing debate regarding the superiority of radiolabeled bombesin-based antagonist peptides over agonists for molecular imaging and therapy of human tumors overexpressing the gastrin-releasing peptide receptor (GRPR) and describes a detailed in vitro and in vivo comparison of 64Cu-NODAGA-6-Ahx-BBN(7-14)NH2 agonist and 64Cu-NODAGA-6-Ahx-DPhe6-BBN(6-13)NHEt antagonist ligands. MATERIALS AND METHODS: Conjugates were synthesized by solid-phase peptide synthesis, purified by reversed-phase high-performance liquid chromatography, and characterized by electrospray ionization-mass spectroscopy. The conjugates were radiolabeled with 64Cu. RESULTS: In vitro and in vivo data support the hypothesis for targeting of the GRPR by these tracer molecules. Maximum-intensity micro Positron Emission Tomography (microPET) imaging studies show the agonist ligand to provide high-quality, high-contrast images with very impressive tumor uptake and background clearance, with virtually no residual gastrointestinal or renal-urinary radioactivity. CONCLUSION: Based on microPET imaging experiments, we conclude the agonist peptide ligand to be a superior molecular imaging agent for targeting GRPR.


Subject(s)
Contrast Media , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnosis , Humans , Ligands , Male
16.
J Chem Crystallogr ; 42(5): 508-512, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22654478

ABSTRACT

2-[2-benzothiazoylmethyl)thio]-benzenamine, which was first reported in 1898, was isolated from the reaction of bromoacetyl bromide and 2-aminothiophenol [1]. The product crystallized from an aqueous methanol solution of the reaction mixture to which nickel(II) acetate had been added. 2-[(2-benzothiazolylmethyl)thio]-benzenamine crystallized in the monoclinic system, in space group C2/c, with cell dimensions of a = 27.392 (19) Å, b = 4.730 (3) Å, and c = 23.686 (16) Å, ß = 122.465 (6)°, V = 2589(3) Å(3), Z = 8 and refined to R = 0.0343 and R(w) = 0.0844. Crystallization from methanol yielded the product as the hydrobromide salt in the monoclinic space group Cc, with cell dimensions of a = 10.488 (3) Å, b = 33.404 (9) Å, c = 5.2578 (14) Å, ß = 116.769(2)°, V = 1644.7(8) Å(3), Z = 4 and refined to R = 0.0296 and R(w) = 0.0600. Mass spectral and NMR analyses confirmed that the bulk and crystalline compound were all 2-[(2-benzothiazolylmethyl)thio]-benzenamine.

17.
Mol Imaging Biol ; 14(6): 667-75, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22314281

ABSTRACT

PURPOSE: A devastating progression of human prostate cancer is the development of bone metastasis. Animal models of bone metastasis induced by inoculating human prostate cell lines into mice are well established. Here, we report the characterization of a mouse model of prostatic bone metastasis using non-invasive microCT and targeted microSPECT imaging of bone tumors using the bombesin receptor (BB2r)-avid radiolabeled peptide, (111)In-DOTA-8-Aoc-BBN[7­14]NH(2). PROCEDURES: Immunocompromised mice were inoculated with human prostate cancer cells by intracardiac injection. Metastatic lesion development was monitored by serially imaging mice weekly with microCT. Mice with CT imaging-confirmed bone lesions were administered (111)In-DOTA-8-Aoc-BBN[7­14]NH(2) for microSPECT imaging of BB2r expressing lesions. RESULTS: Metastatic bone lesions as small as 0.3 mm in diameter were detected by microCT image analysis as early as 21 days after tumor cell inoculation and had wide anatomical distribution. MicroSPECT imaging using (111)In-DOTA-8-Aoc-BBN[7­14]NH(2) successfully targeted BB2r expressing metastatic bone lesions of the tibia at day 29. CONCLUSIONS: MicroCT imaging can accurately and non-invasively follow the onset and progression of metastatic bone lesions in mouse models of prostate cancer. Micro-CT coupled with BB2r Micro-SPECT imaging affords the opportunity to obtain a combined receptor/anatomic map of metastatic bone lesion status in this mouse model.


Subject(s)
Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Prostatic Neoplasms/pathology , Receptors, Bombesin/metabolism , X-Ray Microtomography/methods , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Humans , Humerus/diagnostic imaging , Humerus/pathology , Male , Mice , Tibia/diagnostic imaging , Tibia/pathology , Tomography, Emission-Computed, Single-Photon
18.
Nucl Med Biol ; 39(3): 377-87, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22226021

ABSTRACT

INTRODUCTION: The present study describes the design and development of a new heterodimeric RGD-bombesin (BBN) agonist peptide ligand for dual receptor targeting of the form (64)Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH(2) in which Cu-64=a positron emitting radiometal; NO2A=1,4,7-triazacyclononane-1,4-diacetic acid; Glu=glutamic acid; 6-Ahx=6-aminohexanoic acid; RGD=the amino acid sequence [Arg-Gly-Asp], a nonregulatory peptide that has been used extensively to target α(v)ß(3) receptors up-regulated on tumor cells and neovasculature; and BBN(7-14)NH(2)=Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH(2), an agonist analogue of bombesin peptide for specific targeting of the gastrin-releasing peptide receptor (GRPr). METHODS: RGD-Glu-6-Ahx-BBN(7-14)NH(2) was manually coupled with NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), and the resulting conjugate was labeled with (64)Cu to yield (64)Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH(2). Purification was achieved via reversed-phase high-performance liquid chromatography and characterization confirmed by electrospray ionization-mass spectrometry. RESULTS: Competitive displacement binding assays displayed single-digit nanomolar IC(50) values showing very high binding affinities toward the GRPr for the new heterodimeric peptide analogues. In vivo biodistribution studies showed high uptake and retention of tumor-associated radioactivity in PC-3 tumor-bearing rodent models with little accumulation and retention in nontarget tissues. The radiolabeled conjugate also exhibited rapid urinary excretion and high tumor-to-background ratios. Micro-positron emission tomography (microPET) molecular imaging investigations produced high-quality, high-contrast images in PC-3 tumor-bearing mice 15 h postinjection. CONCLUSIONS: Based on microPET imaging experiments that show high-quality, high-contrast images with virtually no residual gastrointestinal radioactivity, this new heterodimeric RGD-BBN conjugate can be considered as a promising PET tracer candidate for the diagnosis of GRPr-positive tumors in human patients.


Subject(s)
Coordination Complexes/pharmacokinetics , Copper Radioisotopes , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Aminocaproic Acid/chemistry , Aminocaproic Acid/pharmacokinetics , Animals , Binding, Competitive , Bombesin/agonists , Bombesin/analogs & derivatives , Bombesin/chemistry , Bombesin/metabolism , Bombesin/pharmacokinetics , Cell Line, Tumor , Glutamic Acid/chemistry , Glutamic Acid/pharmacokinetics , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacokinetics , Humans , Integrin alphaVbeta3/metabolism , Male , Mice , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Peptide Fragments/chemistry , Peptide Fragments/pharmacokinetics , Positron-Emission Tomography/methods , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Bombesin/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
19.
Nucl Med Biol ; 39(4): 461-71, 2012 May.
Article in English | MEDLINE | ID: mdl-22261143

ABSTRACT

OBJECTIVES: The present study describes the design and development of a series of new bombesin (BBN) antagonist peptide ligands of the form [(64)Cu-(NO2A-X-D-Phe(6)-BBN(6-13)NHEt)], where Cu-64=a positron emitting radiometal; NO2A=1,4,7-triazacyclononane-1,4-diacetic acid; X=6-amino hexanoic acid, 8-amino octanoic acid or 9-Aminononanoic acid; and BBN(6-13)NHEt=Gln-Trp-Ala-Val-Gly-His-Leu-NHEt, an antagonist analogue of bombesin peptide for specific targeting of the gastrin-releasing peptide receptor (GRPR). METHODS: [NO2A-X-D-Phe(6)-BBN(6-13)NHEt] conjugates were manually conjugated with NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), and the resulting conjugates were labeled with (64)Cu to yield [(64)Cu-(NO2A-X-D-Phe(6)-BBN(6-13)NHEt)]. The metallated and nonmetallated conjugates were purified via reversed-phase high-performance liquid chromatography and characterized by electrospray ionization-mass spectrometry. RESULTS: Competitive displacement binding assays displayed nanomolar binding affinities toward human GRPR for all of the newly formed peptide analogues. Biodistribution studies showed very high uptake and retention of tumor-associated radioactivity in PC-3 (a prostate tumor model known to express the GRPR) tumor-bearing rodent models. The radiolabeled conjugates also exhibited rapid urinary excretion and very high tumor to background ratios. Micro-positron emission tomography (PET) molecular imaging investigations showed clear visualization of tumors in female PC-3 tumor-bearing mice 15 h postinjection. CONCLUSION: The biodistribution and molecular imaging study suggests that these conjugates can be considered as potential PET tracer candidates for the diagnosis of GRPR-positive tumors in human patients.


Subject(s)
Bombesin/analogs & derivatives , Molecular Imaging/methods , Receptors, Bombesin/metabolism , Animals , Binding, Competitive , Bombesin/metabolism , Bombesin/pharmacokinetics , Cell Line, Tumor , Cell Transformation, Neoplastic , Copper Radioisotopes , Female , Heterocyclic Compounds/chemistry , Heterocyclic Compounds, 1-Ring , Humans , Male , Mice , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Protein Transport , X-Ray Microtomography
20.
Radiochim Acta ; 100(8-9): 653-667, 2012 Aug.
Article in English | MEDLINE | ID: mdl-25382874

ABSTRACT

Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...