Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1269672, 2023.
Article in English | MEDLINE | ID: mdl-38205198

ABSTRACT

Background: The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods: To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results: We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion: Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.


Subject(s)
Neuropeptides , Transcription Factors , Male , Female , Animals , Mice , Vasoactive Intestinal Peptide , Kisspeptins/genetics , Semen , Suprachiasmatic Nucleus , Reproduction , Neurons , Circadian Rhythm , Gonadotropin-Releasing Hormone , Homeodomain Proteins
2.
Reprod Biol Endocrinol ; 20(1): 163, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424602

ABSTRACT

Obesity impacts fertility and is positively correlated with endometrial hyperplasia and endometrial cancer occurrence. Endometrial epithelia often harbor disease driver-mutations, while endometrial stroma are highly regulative of neighboring epithelia. Here, we sought to determine distinct transcriptome changes occurring in individual cell types in the obese mouse uterus. Outbred CD-1 mice were fed high-fat or control diets for 18 weeks, estrous cycle staged, and endometrial epithelia, macrophages, and stroma isolated for transcriptomic analysis. High-fat diet mice displayed increased body mass and developed glucose intolerance, hyperinsulinemia, and fatty liver. Obese mouse epithelia displayed differential gene expression for genes related to innate immunity and leukocyte chemotaxis. The obese mouse stroma differentially expressed factors related to circadian rhythm, and expression of these genes correlated with glucose tolerance or body mass. We observed correlations between F4/80 + macrophage numbers, Cleaved Caspase 3 (CC3) apoptosis marker staining and glucose intolerance among obese mice, including a subgroup of obese mice with high CC3 + luminal epithelia. This subgroup displayed differential gene expression among all cell types, with pathways related to immune escape in epithelia and macrophages, while the stroma dysregulated pathways related to regulation of epithelia. These results suggest an important role for differential response of both the epithelia and stroma in their response to obesity, while macrophages are dysregulated in the context of apoptotic epithelia. The obesity-related gene expression programs in cells within the uterine microenvironment may influence the ability of the endometrium to function during pregnancy and influence disease pathogenesis.


Subject(s)
Glucose Intolerance , Transcriptome , Pregnancy , Female , Mice , Animals , Mice, Obese , Obesity/genetics , Obesity/metabolism , Diet, High-Fat/adverse effects
3.
Sci Rep ; 12(1): 17856, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284122

ABSTRACT

Pre-eclampsia (PE) is a hypertensive condition that occurs during pregnancy and complicates up to 4% of pregnancies. PE exhibits several circadian-related characteristics, and the placenta possesses a functioning molecular clock. We examined the associations of 17 core circadian gene transcripts in placenta with PE vs. non-PE (a mixture of pregnant women with term, preterm, small-for-gestational-age, or chorioamnionitis) using two independent gene expression datasets: GSE75010-157 (80 PE vs. 77 non-PE) and GSE75010-173 (77 PE and 96 non-PE). We found a robust difference in circadian gene expression between PE and non-PE across the two datasets, where CRY1 mRNA increases and NR1D2 and PER3 transcripts decrease in PE placenta. Gene set variation analysis revealed an interplay between co-alterations of circadian clock genes and PE with altered hypoxia, cell migration/invasion, autophagy, and membrane trafficking pathways. Using human placental trophoblast HTR-8 cells, we show that CRY1/2 and NR1D1/2 regulate trophoblast migration. A subgroup study including only term samples demonstrated that CLOCK, NR1D2, and PER3 transcripts were simultaneously decreased in PE placenta, a finding supported by CLOCK protein downregulation in an independent cohort of human term PE placenta samples. These findings provide novel insights into the roles of the molecular clock in the pathogenesis of PE.


Subject(s)
Circadian Clocks , Pre-Eclampsia , Infant, Newborn , Humans , Female , Pregnancy , Pre-Eclampsia/metabolism , Circadian Clocks/genetics , Placenta/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Trophoblasts/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Endocrinology ; 163(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-35933634

ABSTRACT

In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.


Subject(s)
Hyperandrogenism , Non-alcoholic Fatty Liver Disease , Polycystic Ovary Syndrome , Androgens/metabolism , Androgens/pharmacology , Animals , Disease Models, Animal , Epigenesis, Genetic , Female , Histones/metabolism , Humans , Hyperandrogenism/complications , Mice , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Polycystic Ovary Syndrome/metabolism
6.
Mol Metab ; 57: 101431, 2022 03.
Article in English | MEDLINE | ID: mdl-34974160

ABSTRACT

OBJECTIVE: The increasing prevalence of obesity makes it important to increase the understanding of the maturation and function of the neuronal integrators and regulators of metabolic function. METHODS: Behavioral, molecular, and physiological analyses of transgenic mice with Sine oculis 3 (Six3) deleted in mature neurons using the Synapsincreallele. RESULTS: Conditional deletion of the homeodomain transcription factor Six3 in mature neurons causes dwarfism and weakens circadian wheel-running activity rhythms but increases general activity at night, and improves metabolic function, without impacting pubertal onset or fertility in males. The reduced growth in 6-week-old Six3fl/fl:Synapsincre (Six3syn) males correlates with increased somatostatin (SS) expression in the hypothalamus and reduced growth hormone (GH) in the pituitary. In contrast, 12-week-old Six3syn males have increased GH release, despite an increased number of the inhibitory SS neurons in the periventricular nucleus. GH is important in glucose metabolism, muscle function, and bone health. Interestingly, Six3syn males have improved glucose tolerance at 7, 12, and 18 weeks of age, which, in adulthood, is associated with increased % lean mass and increased metabolic rates. Further, 12-week-old Six3syn males have reduced bone mineralization and a lower bone mineral density, indicating that reduced GH levels during early life cause a long-term reduction in bone mineralization. CONCLUSION: Our study points to the novel role of Six3 in post-proliferative neurons to regulate metabolic function through SS neuron control of GH release.


Subject(s)
Dwarfism , Homeodomain Proteins , Animals , Dwarfism/genetics , Dwarfism/metabolism , Eye Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism
7.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34967900

ABSTRACT

For billions of years before electric light was invented, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth's 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This phenomenon is particularly true for reproductive function, in which seasonal breeders use day length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in nonseasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.


Subject(s)
Circadian Rhythm/physiology , Luteinizing Hormone/metabolism , Nerve Net/physiology , Neurons/physiology , Animals , Circadian Clocks , Circadian Rhythm/genetics , Circadian Rhythm Signaling Peptides and Proteins , Female , Gonadotropin-Releasing Hormone , Hypothalamus , Kisspeptins , Light , Male , Neuropeptides/physiology , Rodentia , Suprachiasmatic Nucleus/physiology , Transcription Factors/physiology
8.
Front Genet ; 13: 1051396, 2022.
Article in English | MEDLINE | ID: mdl-36712876

ABSTRACT

Long non-coding RNAs (lncRNAs) have a much higher cell- and/or tissue-specificity compared to mRNAs in most cases, making them excellent candidates for therapeutic applications to reduce off-target effects. Placental long non-coding RNAs have been investigated in the pathogenesis of preeclampsia (often causing preterm birth (PTB)), but less is known about their role in preterm birth. Preterm birth occurs in 11% of pregnancies and is the most common cause of death among infants in the world. We recently identified that genes that drive circadian rhythms in cells, termed molecular clock genes, are deregulated in maternal blood of women with spontaneous PTB (sPTB) and in the placenta of women with preeclampsia. Next, we focused on circadian genes-correlated long intergenic non-coding RNAs (lincRNAs, making up most of the long non-coding RNAs), designated as circadian lincRNAs, associated with sPTB. We compared the co-altered circadian transcripts-correlated lincRNAs expressed in placentas of sPTB and term births using two published independent RNAseq datasets (GSE73712 and GSE174415). Nine core clock genes were up- or downregulated in sPTB versus term birth, where the RORA transcript was the only gene downregulated in sPTB across both independent datasets. We found that five circadian lincRNAs (LINC00893, LINC00265, LINC01089, LINC00482, and LINC00649) were decreased in sPTB vs term births across both datasets (p ≤ .0222, FDR≤.1973) and were negatively correlated with the dataset-specific clock genes-based risk scores (correlation coefficient r = -.65 ∼ -.43, p ≤ .0365, FDR≤.0601). Gene set variation analysis revealed that 65 pathways were significantly enriched by these same five differentially expressed lincRNAs, of which over 85% of the pathways could be linked to immune/inflammation/oxidative stress and cell cycle/apoptosis/autophagy/cellular senescence. These findings may improve our understanding of the pathogenesis of spontaneous preterm birth and provide novel insights into the development of potentially more effective and specific therapeutic targets against sPTB.

9.
J Neurosci Res ; 99(10): 2625-2645, 2021 10.
Article in English | MEDLINE | ID: mdl-34212416

ABSTRACT

The homeodomain transcription factors sine oculis homeobox 3 (Six3) and ventral anterior homeobox 1 (Vax1) are required for brain development. Their expression in specific brain areas is maintained in adulthood, where their functions are poorly understood. To identify the roles of Six3 and Vax1 in neurons, we conditionally deleted each gene using Synapsincre , a promoter targeting maturing neurons, and generated Six3syn and Vax1syn mice. Six3syn and Vax1syn females, but not males, had reduced fertility, due to impairment of the luteinizing hormone (LH) surge driving ovulation. In nocturnal rodents, the LH surge requires a precise timing signal from the brain's circadian pacemaker, the suprachiasmatic nucleus (SCN), near the time of activity onset. Indeed, both Six3syn and Vax1syn females had impaired rhythmic SCN output, which was associated with weakened Period 2 molecular clock function in both Six3syn and Vax1syn mice. These impairments were associated with a reduction of the SCN neuropeptide vasoactive intestinal peptide in Vax1syn mice and a modest weakening of SCN timekeeping function in both Six3syn and Vax1syn mice. Changes in SCN function were associated with mistimed peak PER2::LUC expression in the SCN and pituitary in both Six3syn and Vax1syn females. Interestingly, Six3syn ovaries presented reduced sensitivity to LH, causing reduced ovulation during superovulation. In conclusion, we have identified novel roles of the homeodomain transcription factors SIX3 and VAX1 in neurons, where they are required for proper molecular circadian clock function, SCN rhythmic output, and female fertility.


Subject(s)
Circadian Rhythm/physiology , Eye Proteins/metabolism , Fertility/physiology , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Running/physiology , Suprachiasmatic Nucleus/metabolism , Animals , Eye Proteins/genetics , Female , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Neuropeptides/genetics , Homeobox Protein SIX3
10.
Mol Cell Endocrinol ; 534: 111358, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34098016

ABSTRACT

Regulation of Kiss1 transcription is crucial to the development and function of the reproductive axis. The homeodomain transcription factor, ventral anterior homeobox 1 (VAX1), has been implicated as a potential regulator of Kiss1 transcription. However, it is unknown whether VAX1 directly mediates transcription within kisspeptin neurons or works indirectly by acting upstream of kisspeptin neuron populations. This study tested the hypothesis that VAX1 within kisspeptin neurons regulates Kiss1 gene expression. We found that VAX1 acts as a repressor of Kiss1 in vitro and within the male arcuate nucleus in vivo. In female mice, we found that the loss of VAX1 caused a reduction in Kiss1 expression and Kiss1-containing neurons in the anteroventral periventricular nucleus at the time of the preovulatory luteinizing hormone surge, but was compensated by an increase in Kiss1-cFos colocalization. Despite changes in Kiss1 transcription, gonadotropin levels were unaffected and there were no impairments to fertility.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Homeodomain Proteins/genetics , Hypothalamus, Anterior/metabolism , Kisspeptins/genetics , Neuropeptides/genetics , Animals , Cell Line , Female , Gene Deletion , Gene Expression Regulation , Gonadotropins/metabolism , Homeodomain Proteins/metabolism , Humans , Kisspeptins/metabolism , Male , Mice , Mice, Transgenic , Neuropeptides/metabolism , Promoter Regions, Genetic , Sex Characteristics
11.
Biol Reprod ; 105(4): 827-836, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34142702

ABSTRACT

Previous studies have observed an association between maternal circadian rhythm disruption and preterm birth (PTB). However, the underlying molecular mechanisms and the potential of circadian clock genes to serve as predictors of PTB remain unexplored. We examined the association of 10 core circadian transcripts in maternal blood with spontaneous PTB (sPTB) vs term births using a nested case-control study design. We used a public gene expression dataset (GSE59491), which was nested within the All Our Babies (AOB) study cohort in Canada. Maternal blood was sampled in Trimesters 2-3 from women with sPTB (n = 51) and term births (n = 106), matched for five demographic variables. In 2nd trimester maternal blood, only CLOCK and CRY2 transcripts were significantly lower in sPTB vs term (P = 0.02-0.03, false discovery rate (FDR) < 0.20). A change of PER3 mRNA from trimesters 2-3 was significantly associated with sPTB (decline in sPTB, P = 0.02, FDR < 0.20). When CLOCK and CRY2 were modeled together in 2nd trimester blood, the odds of being in the low level of both circadian gene transcripts was greater in sPTB vs term (OR = 4.86, 95%CI = (1.75,13.51), P < 0.01). Using GSVA and Pearson correlation, we identified 98 common pathways that were negatively or positively correlated with CLOCK and CRY2 expression (all P < 0.05, FDR < 0.10). The top three identified pathways were amyotrophic lateral sclerosis, degradation of extracellular matrix, and inwardly rectifying potassium channels. These three processes have previously been shown to be involved in neuron death, parturition, and uterine excitability during pregnancy, respectively.


Subject(s)
CLOCK Proteins/deficiency , Cryptochromes/deficiency , Premature Birth/epidemiology , Adult , Alberta/epidemiology , CLOCK Proteins/blood , Case-Control Studies , Cryptochromes/blood , Female , Humans , Mothers , Pregnancy , Pregnancy Trimester, Second , Premature Birth/etiology , Young Adult
12.
J Neurosci Res ; 99(1): 294-308, 2021 01.
Article in English | MEDLINE | ID: mdl-32128870

ABSTRACT

Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.


Subject(s)
Circadian Rhythm/physiology , Estrous Cycle/physiology , Pregnancy/physiology , Animals , Female , Mice , Motor Activity/physiology , Ovary/physiology , Pituitary Gland/physiology , Suprachiasmatic Nucleus/physiology , Uterus/physiology
13.
Elife ; 92020 08 07.
Article in English | MEDLINE | ID: mdl-32762844

ABSTRACT

Different subtypes of interneurons, destined for the olfactory bulb, are continuously generated by neural stem cells located in the ventricular and subventricular zones along the lateral forebrain ventricles of mice. Neuronal identity in the olfactory bulb depends on the existence of defined microdomains of pre-determined neural stem cells along the ventricle walls. The molecular mechanisms underlying positional identity of these neural stem cells are poorly understood. Here, we show that the transcription factor Vax1 controls the production of two specific neuronal subtypes. First, it is directly necessary to generate Calbindin expressing interneurons from ventro-lateral progenitors. Second, it represses the generation of dopaminergic neurons by dorsolateral progenitors through inhibition of Pax6 expression. We present data indicating that this repression occurs, at least in part, via activation of microRNA miR-7.


Subject(s)
Gene Expression Regulation , Homeodomain Proteins/metabolism , Neural Stem Cells/physiology , Neurogenesis , Neuropeptides/metabolism , Olfactory Bulb/physiology , PAX6 Transcription Factor/metabolism , Animals , Calbindins/genetics , Cell Differentiation , Female , Homeodomain Proteins/genetics , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neural Stem Cells/classification , Neuropeptides/genetics , PAX6 Transcription Factor/genetics
14.
Mol Cell Endocrinol ; 507: 110781, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32119896

ABSTRACT

Many physiological systems rely on hormones to communicate and time cellular and tissue-level functions. Most endocrine systems are dynamic and governed by complex regulatory systems and/or feedback mechanisms to generate precise patterns and modes of hormone release in order to optimize control of physiological and cellular processes. This Special Issue focuses on hormone release patterns (ultradian, infradian, pulsatile, circadian), with a special emphasis on the hypothalamic-pituitary axis as well as melatonin release, and how these patterns of hormone secretion change during life stages and disease.


Subject(s)
Circadian Rhythm/physiology , Hormones/metabolism , Mammals/metabolism , Animals , Humans , Melatonin/physiology , Secretory Pathway/physiology
15.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396885

ABSTRACT

Shiftwork, including work that takes place at night (nightshift) and/or rotates between day and nightshifts, plays an important role in our society, but is associated with decreased health, including reproductive dysfunction. One key factor in shiftwork, exposure to light at night, has been identified as a likely contributor to the underlying health risks associated with shiftwork. Light at night disrupts the behavioral and molecular circadian timekeeping system, which is important for coordinated timing of physiological processes, causing mistimed hormone release and impaired physiological functions. This review focuses on the impact of shiftwork on reproductive function and pregnancy in women and laboratory rodents and potential underlying molecular mechanisms. We summarize the negative impact of shiftwork on female fertility and compare these findings to studies in rodent models of light shifts. Light-shift rodent models recapitulate several aspects of reproductive dysfunction found in shift workers, and their comparison with human studies can enable a deeper understanding of physiological and hormonal responses to light shifts and the underlying molecular mechanisms that may lead to reproductive disruption in human shift workers. The contributions of human and rodent studies are essential to identify the origins of impaired fertility in women employed in shiftwork.


Subject(s)
Circadian Rhythm , Fertility , Hormones/metabolism , Reproduction , Animals , Female , Humans , Rodentia
16.
Mol Cell Endocrinol ; 501: 110655, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31756424

ABSTRACT

Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.


Subject(s)
CLOCK Proteins/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Reproduction/genetics , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Fertility/genetics , Humans , Hypothalamus/physiology , Pituitary Gland/physiology , Reproduction/physiology
17.
Mol Neurobiol ; 57(2): 1217-1232, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31705443

ABSTRACT

The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.


Subject(s)
Homeodomain Proteins/metabolism , Neuropeptides/metabolism , Suprachiasmatic Nucleus/growth & development , Suprachiasmatic Nucleus/physiology , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Circadian Rhythm/physiology , Gene Expression Regulation/physiology , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Mice , Neurons/metabolism
18.
Endocrinology ; 160(9): 2151-2164, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31211355

ABSTRACT

Hypothalamic GnRH (luteinizing hormone-releasing hormone) neurons are crucial for the hypothalamic-pituitary-gonadal (HPG) axis, which regulates mammalian fertility. Insufficient GnRH disrupts the HPG axis and is often associated with the genetic condition idiopathic hypogonadotropic hypogonadism (IHH). The homeodomain protein sine oculis-related homeobox 6 (Six6) is required for the development of GnRH neurons. Although it is known that Six6 is specifically expressed within a more mature GnRH neuronal cell line and that overexpression of Six6 induces GnRH transcription in these cells, the direct role of Six6 within the GnRH neuron in vivo is unknown. Here we find that global Six6 knockout (KO) embryos show apoptosis of GnRH neurons beginning at embryonic day 14.5 with 90% loss of GnRH neurons by postnatal day 1. We sought to determine whether the hypogonadism and infertility reported in the Six6KO mice are generated via actions within the GnRH neuron in vivo by creating a Six6-flox mouse and crossing it with the LHRHcre mouse. Loss of Six6 specifically within the GnRH neuron abolished GnRH expression in ∼0% of GnRH neurons. We further demonstrated that deletion of Six6 only within the GnRH neuron leads to infertility, hypogonadism, hypogonadotropism, and delayed puberty. We conclude that Six6 plays distinct roles in maintaining fertility in the GnRH neuron vs in the migratory environment of the GnRH neuron by maintaining expression of GnRH and survival of GnRH neurons, respectively. These results increase knowledge of the role of Six6 in the brain and may offer insight into the mechanism of IHH.


Subject(s)
Gonadotropin-Releasing Hormone/genetics , Homeodomain Proteins/physiology , Infertility/etiology , Trans-Activators/physiology , Animals , Apoptosis , Hypogonadism/etiology , Male , Mice, Inbred C57BL
19.
Neuroendocrinology ; 108(4): 328-342, 2019.
Article in English | MEDLINE | ID: mdl-30739114

ABSTRACT

There is an increasing trend in studies utilizing cell-specific deletion of genes through conditional gene deletion by CRE recombination. Despite numerous advantages, this strategy also has limitations such as ectopic CRE-expression and germline recombination. Two commonly used gonadotropin-releasing hormone (Gnrh)-driven CRE-expressing mice both target GnRH neurons. However, a direct comparison of the cells targeted and their phenotypic outcome have not yet been presented. To compare where recombination takes place, we crossed the Gnrh-cre and Lhrh-cre lines with the Rosa26-LacZ reporter mouse. Lhrh-cre allowed recombination of the Rosa26-LacZ gene in ∼700 cells, which is comparable to the GnRH neuronal population. Surprisingly, there were > 20 times more LacZ expressing cells in the adult Gnrh-cre:Rosa26-LacZ than the Lhrh-cre:Rosa26-LacZ brain. The greatest differences in targeting of the Gnrh-cre and Lhrh-cre lines were found in the septum, the suprachiasmatic nucleus, and the septohypothalamic area. This difference in cells targeted was present from embryonic day 12. A prior study using the Gnrh-cre to delete the transcription factor Otx2 found fewer GnRH neurons, leading to male and female subfertility. To recapitulate this study, we performed a fertility assay in Otx2:Lhrh-cre mice. We confirmed the requirement for Otx2 in GnRH neuron development, fertility and correct gonadotropin hormone release in Otx2:Lhrh-cre males, but the subfertility was more modest than in Otx2:Gnrh-cre and absent in female Otx2:Lhrh-cre. This suggests that ectopic expression of Gnrh-cre contributes to the reproductive phenotype observed. Finally, the Cre alleles caused germline recombination of the flox allele when transmitted from either parent, generating embryonic lethal knock-out offspring, producing smaller live litters.


Subject(s)
Gonadotropin-Releasing Hormone/genetics , Infertility/genetics , Otx Transcription Factors/genetics , Alleles , Animals , Brain/metabolism , Gonadotropin-Releasing Hormone/metabolism , Mice, Transgenic , Neurons/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/metabolism
20.
Neuroendocrinology ; 109(3): 200-207, 2019.
Article in English | MEDLINE | ID: mdl-30261489

ABSTRACT

Haploinsufficiency occurs when loss of one copy of a diploid gene (hemizygosity) causes a phenotype. It is relatively rare, in that most genes can produce sufficient mRNA and protein from a single copy to prevent any loss of normal activity and function. Reproduction is a complex process relying on migration of GnRH neurons from the olfactory placode to the hypothalamus during development. We have studied 3 different homeodomain genes Otx2, Vax1, and Six3 and found that the deletion of one allele for any of these genes in mice produces subfertility or infertility in one or both sexes, despite the presence of one intact allele. All 3 heterozygous mice have reduced numbers of GnRH neurons, but the mechanisms of subfertility differ significantly. This review compares the subfertility phenotypes and their mechanisms.


Subject(s)
Eye Proteins/genetics , Haploinsufficiency , Homeodomain Proteins/genetics , Infertility/genetics , Nerve Tissue Proteins/genetics , Neuropeptides/genetics , Otx Transcription Factors/genetics , Animals , Eye Proteins/metabolism , Gonadotropin-Releasing Hormone/metabolism , Homeodomain Proteins/metabolism , Infertility/metabolism , Mice , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Otx Transcription Factors/metabolism , Phenotype , Homeobox Protein SIX3
SELECTION OF CITATIONS
SEARCH DETAIL
...