Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Sci Rep ; 14(1): 13856, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879632

ABSTRACT

Floral nectar sugar composition is assumed to reflect the nutritional demands and foraging behaviour of pollinators, but the relative contributions of evolutionary and abiotic factors to nectar sugar composition remain largely unknown across the angiosperms. We compiled a comprehensive dataset on nectar sugar composition for 414 insect-pollinated plant species across central Europe, along with phylogeny, paleoclimate, flower morphology, and pollinator dietary demands, to disentangle their relative effects. We found that phylogeny was strongly related with nectar sucrose content, which increased with the phylogenetic age of plant families, but even more strongly with historic global surface temperature. Nectar sugar composition was also defined by floral morphology, though it was not related to our functional measure of pollinator dietary demands. However, specialist pollinators of current plant-pollinator networks predominantly visited plant species with sucrose-rich nectar. Our results suggest that both physiological mechanisms related to plant water balance and evolutionary effects related to paleoclimatic changes have shaped floral nectar sugar composition during the radiation and specialisation of plants and pollinators. As a consequence, the high velocity of current climate change may affect plant-pollinator interaction networks due to a conflicting combination of immediate physiological responses and phylogenetic conservatism.


Subject(s)
Biological Evolution , Flowers , Phylogeny , Plant Nectar , Pollination , Plant Nectar/metabolism , Plant Nectar/chemistry , Pollination/physiology , Flowers/metabolism , Flowers/physiology , Sugars/metabolism , Sugars/analysis , Animals , Insecta/physiology , Sucrose/metabolism , Europe , Magnoliopsida/physiology , Magnoliopsida/metabolism , Climate Change
2.
Nat Commun ; 15(1): 3224, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622133

ABSTRACT

The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer. Upon entering non-lymphoid tissues, donor regulatory T cells acquire organ-specific gene expression profiles resembling tissue-resident cells and activate hallmark suppressive and cytotoxic pathways, most evidently in the colon, when co-transplanted with graft-versus-host disease-inducing conventional T cells. Dominant T cell receptor clonotypes overlap between organs and across recipients and their relative abundance correlates with protection efficacy. Thus, this study reveals donor regulatory T cell selection and adaptation mechanisms in target organs and highlights protective features of Treg to guide the development of improved graft-versus-host disease prevention strategies.


Subject(s)
Graft vs Host Disease , T-Lymphocytes, Regulatory , Mice , Animals , T-Lymphocytes, Regulatory/transplantation , Transplantation, Homologous , Bone Marrow Transplantation , Graft vs Host Disease/prevention & control , Mice, Inbred C57BL
3.
Front Immunol ; 15: 1347835, 2024.
Article in English | MEDLINE | ID: mdl-38495883

ABSTRACT

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.


Subject(s)
Cholecalciferol , Intestine, Small , Mice , Animals , Cholecalciferol/pharmacology , Mice, Inbred C57BL , Epithelial Cells , Diet
4.
Haematologica ; 108(11): 2993-3000, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37259539

ABSTRACT

Intestinal immunoglobulin A (IgA) is strongly involved in microbiota homeostasis. Since microbiota disruption is a major risk factor of acute graft-versus-host disease (GvHD), we addressed the kinetics of intestinal IgA-positive (IgA+) plasma cells by immunohistology in a series of 430 intestinal biopsies obtained at a median of 1,5 months after allogeneic stem cell transplantation (allo-SCT) from 115 patients (pts) at our center. IgA+ plasma cells were located in the subepithelial lamina propria and suppressed in the presence of histological aGvHD (GvHD Lerner stage 0: 131+/-8 IgA+ plasma cells/mm2; stage 1-2: 108+/-8 IgA+ plasma cells/mm2; stage 3-4: 89+/-16 IgA+ plasma cells/mm2; P=0.004). Overall, pts with IgA+ plasma cells below median had an increased treatment related mortality (P=0.04). Time courses suggested a gradual recovery of IgA+ plasma cells after day 100 in the absence but not in the presence of GvHD. Vice versa IgA+ plasma cells above median early after allo-SCT were predictive of relapse and relapse-related mortality (RRM): pts with low IgA+ cells had a 15% RRM at 2 and at 5 years, while pts with high IgA+ cells had a 31% RRM at 2 years and more than 46% at 5 years; multivariate analysis indicated high IgA+ plasma cells in biopsies (hazard ratio =2.7; 95% confidence interval: 1.04-7.00) as independent predictors of RRM, whereas Lerner stage and disease stage themselves did not affect RRM. In contrast, IgA serum levels at the time of biopsy were not predictive for RRM. In summary, our data indicate that IgA+ cells are highly sensitive indicators of alloreaction early after allo-SCT showing association with TRM but also allowing prediction of relapse independently from the presence of overt GvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Plasma Cells/pathology , Immunoglobulin A , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Chronic Disease , Recurrence
5.
JCI Insight ; 8(5)2023 03 08.
Article in English | MEDLINE | ID: mdl-36719764

ABSTRACT

Reactivation of human cytomegalovirus (HCMV) from latency is a frequent complication following hematopoietic stem cell transplantation (HSCT). The development of acute graft-versus-host disease (GVHD) is a significant risk factor for HCMV disease. Using a murine GVHD model in animals latently infected with murine CMV (MCMV), we studied preventive and therapeutic interventions in this high-risk scenario of HSCT. Mice latently infected with MCMV experienced reactivated MCMV and developed disseminated MCMV infection concomitant with the manifestations of GVHD. Dissemination was accompanied by accelerated mortality. We demonstrate that MCMV reactivation and dissemination was modulated by MCMV-specific antibodies, thus demonstrating in vivo protective activity of antiviral antibodies. However, the efficacy of serum therapy required repetitive doses of high-titer immune serum secondary to the shortened serum half-life of IgG in animals with GVHD. In a complementary approach, treatment of GVHD by adoptive transfer of donor-derived Tregs facilitated production of MCMV-specific antibodies from newly developing donor-derived B cells. Together, our findings strongly suggest that antibodies play a major role in controlling recurrent MCMV infection that follows GVHD, and they argue for reassessing the potential of antibody treatments as well as therapeutic strategies that enhance de novo antibody development against HCMV.


Subject(s)
Cytomegalovirus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Muromegalovirus , Mice , Humans , Animals , Cytomegalovirus/physiology , Hematopoietic Stem Cell Transplantation/adverse effects , Antibodies, Viral
6.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161919

ABSTRACT

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Subject(s)
Biosensing Techniques , Cell Engineering , Cell- and Tissue-Based Therapy , Inflammation , T-Lymphocytes, Regulatory , Animals , CD28 Antigens/metabolism , Humans , Inflammation/therapy , Ligands , Lymphotoxin beta Receptor/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , Receptors, Tumor Necrosis Factor/metabolism , T-Lymphocytes, Regulatory/transplantation , Tumor Necrosis Factor-alpha
7.
Plant Cell Environ ; 45(12): 3412-3428, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35982608

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore-triggered phosphate (Pi)- and jasmonate (JA)-related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi-uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore-triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi-uptake pathway in the plant's response to herbivory, we used the mutant line ha1-2, impaired in the H+ -ATPase gene HA1, which is essential for Pi-uptake via the mycorrhizal pathway. We found that mycorrhiza-triggered enhancement of herbivore performance was compromised in ha1-2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi-uptake pathway is involved in the modulation of the plant defence strategy.


Subject(s)
Medicago truncatula , Mycorrhizae , Mycorrhizae/physiology , Symbiosis/physiology , Medicago truncatula/metabolism , Herbivory , Plant Roots/metabolism , Gene Expression Regulation, Plant
8.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682650

ABSTRACT

Accelerated glycolysis leads to secretion and accumulation of lactate and protons in the tumor environment and determines the efficacy of adoptive T cell and checkpoint inhibition therapy. Here, we analyzed effects of lactic acid on different human CD4 T cell subsets and aimed to increase CD4 T cell resistance towards lactic acid. In all CD4 T cell subsets analyzed, lactic acid inhibited metabolic activity (glycolysis and respiration), cytokine secretion, and cell proliferation. Overexpression of the lactate-metabolizing isoenzyme LDHB increased cell respiration and mitigated lactic acid effects on intracellular cytokine production. Strikingly, LDHB-overexpressing cells preferentially migrated into HCT116 tumor spheroids and displayed higher expression of cytotoxic effector molecules. We conclude, that LDHB overexpression might be a promising strategy to increase the efficacy of adoptive T cell transfer therapy.


Subject(s)
Lactate Dehydrogenases/metabolism , Lactic Acid , Neoplasms , Cell Line, Tumor , Cytokines/metabolism , Glycolysis , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Neoplasms/metabolism , T-Lymphocytes/metabolism
9.
Mol Psychiatry ; 27(2): 907-917, 2022 02.
Article in English | MEDLINE | ID: mdl-34980886

ABSTRACT

Various single nucleotide polymorphisms (SNPs) in the oxytocin receptor (OXTR) gene have been associated with behavioral traits, autism spectrum disorder (ASD) and other diseases. The non-synonymous SNP rs4686302 results in the OXTR variant A218T and has been linked to core characteristics of ASD, trait empathy and preterm birth. However, the molecular and intracellular mechanisms underlying those associations are still elusive. Here, we uncovered the molecular and intracellular consequences of this mutation that may affect the psychological or behavioral outcome of oxytocin (OXT)-treatment regimens in clinical studies, and provide a mechanistic explanation for an altered receptor function. We created two monoclonal HEK293 cell lines, stably expressing either the wild-type or A218T OXTR. We detected an increased OXTR protein stability, accompanied by a shift in Ca2+ dynamics and reduced MAPK pathway activation in the A218T cells. Combined whole-genome and RNA sequencing analyses in OXT-treated cells revealed 7823 differentially regulated genes in A218T compared to wild-type cells, including 429 genes being associated with ASD. Furthermore, computational modeling provided a molecular basis for the observed change in OXTR stability suggesting that the OXTR mutation affects downstream events by altering receptor activation and signaling, in agreement with our in vitro results. In summary, our study provides the cellular mechanism that links the OXTR rs4686302 SNP with genetic dysregulations associated with aspects of ASD.


Subject(s)
Autism Spectrum Disorder , Premature Birth , Autism Spectrum Disorder/drug therapy , Female , HEK293 Cells , Humans , Infant, Newborn , Oxytocin/metabolism , Pregnancy , Premature Birth/drug therapy , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Structure-Activity Relationship
10.
Scand J Immunol ; 95(5): e13146, 2022 May.
Article in English | MEDLINE | ID: mdl-35073416

ABSTRACT

1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analysed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg (iTreg) polarization conditions using TGF-ß. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-ß further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.


Subject(s)
Calcifediol , Cholecalciferol , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Calcifediol/metabolism , Cholecalciferol/pharmacology , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Phenotype , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , T-Lymphocytes, Regulatory , Transforming Growth Factor beta/metabolism , Vitamin D/analogs & derivatives
11.
J Immunol Methods ; 501: 113212, 2022 02.
Article in English | MEDLINE | ID: mdl-34971633

ABSTRACT

Antibody-mediated rejection is a major cause of graft failure in organ transplantation. For this reason, B cell responses are of particular interest to transplantation research. Rats are important model organisms for transplant studies, but B cell alloimmune assays and B cell subset markers are poorly established in rats. We alloimmunized rats by donor blood injection using the high responder rat strain combination Brown Norway (donor) and Lewis (recipient) rats. Using splenocytes from alloimmunized and control rats, we established assays to assess allospecific B cell proliferation and the capacity to generate allospecific B memory cells and alloantibody-secreting cells after antigenic rechallenge in vitro using a mixed lymphocyte reaction. Furthermore, we defined a simple gating and sorting strategy for pre- and post-germinal center follicular B cells, as well as non-switched and switched plasmablasts. Our protocols for assessing B cell alloresponses and B cell subsets in rats may help to accelerate research into the role of B cells and manipulation of humoral alloresponses in transplant research.


Subject(s)
B-Lymphocytes/immunology , Graft Rejection/immunology , Immunity, Humoral , Isoantibodies/blood , Isoantigens/immunology , Lymphocyte Activation , Animals , Cell Proliferation , Cells, Cultured , Graft Rejection/blood , Immunologic Memory , Male , Memory B Cells/immunology , Phenotype , Rats, Inbred BN , Rats, Inbred Lew
12.
Front Immunol ; 12: 753287, 2021.
Article in English | MEDLINE | ID: mdl-34777363

ABSTRACT

Microbiota can exert immunomodulatory effects by short-chain fatty acids (SCFA) in experimental models of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT). Therefore we aimed to analyze the expression of SCFAs sensing G-protein coupled receptor GPR109A and GPR43 by quantitative PCR in 338 gastrointestinal (GI) biopsies obtained from 199 adult patients undergoing allo-SCT and assessed the interaction of GPR with FOXP3 expression and regulatory T cell infiltrates. GPR expression was strongly upregulated in patients with stage II-IV GvHD (p=0.000 for GPR109A, p=0.01 for GPR43) and at the onset of GvHD (p 0.000 for GPR109A, p=0.006 for GPR43) and correlated strongly with FOXP3 and NLRP3 expression. The use of broad-spectrum antibiotics (Abx) drastically suppressed GPR expression as well as FOXP3 expression in patients' gut biopsies (p=0.000 for GPRs, FOXP3 mRNA and FOXP3+ cellular infiltrates). Logistic regression analysis revealed treatment with Abx as an independent factor associated with GPR and FOXP3 loss. The upregulation of GPRs was evident only in the absence of Abx (p=0.001 for GPR109A, p=0.014 for GPR43) at GvHD onset. Thus, GPR expression seems to be upregulated in the presence of commensal bacteria and associates with infiltration of FOXP3+ T regs, suggesting a protective, regenerative immunomodulatory response. However, Abx, which has been shown to induce dysbiosis, interferes with this protective response.


Subject(s)
Anti-Bacterial Agents/adverse effects , Dysbiosis/chemically induced , Gastrointestinal Microbiome/drug effects , Graft vs Host Disease/microbiology , Intestines/metabolism , Receptors, Cell Surface/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Adult , Allografts , Anti-Bacterial Agents/pharmacology , Biopsy , Butyrates/pharmacology , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dysbiosis/microbiology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fatty Acids, Volatile/physiology , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunomodulation , Intestines/microbiology , Intestines/pathology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/biosynthesis , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptors, Cell Surface/genetics , Receptors, G-Protein-Coupled/genetics , Severity of Illness Index , Symbiosis , T-Lymphocytes, Regulatory/immunology , Up-Regulation
13.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34779418

ABSTRACT

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Subject(s)
Basigin/physiology , COVID-19/immunology , Dexamethasone/pharmacology , SARS-CoV-2 , T-Lymphocytes/metabolism , Adult , COVID-19/metabolism , Cyclophilin A/physiology , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Reactive Oxygen Species/metabolism
14.
J Immunol Methods ; 496: 113086, 2021 09.
Article in English | MEDLINE | ID: mdl-34146580

ABSTRACT

Rare subpopulations of tumor antigen-reactive memory T cells, which actively secrete type-1 effector cytokines, particularly TNF-α in situ, possess anti-tumor activity and prognostic relevance. These cells are relevant for cancer immunotherapy; however, their low frequencies make them difficult to study and novel protocols for their culture and expansion ex vivo are needed. Here, we studied the presence of T cells secreting type-1 cytokines (Cy+T cells) in the blood and tumors of 24 patients with oral squamous cell carcinomas (OSCC) and explored possibilities for their isolation and expansion. More than 90% of OSCC patients contained enriched numbers Cy+T cells in the blood and tumors compared to healthy donors in which these were hardly detectable. The majority of TNF-α+T cells were CD4+ T helper cells while IFN-γ+TIL were predominantly CD8+. Cy+T helper cells in the blood were early-differentiated memory T cells while Cy+TIL and Cy+CD8+T cells showed advanced-differentiated memory T cell phenotypes. We explored different conditions for their in vitro culture and found that Cy+T cells can be efficiently expanded in vitro to similar levels as Cy-T cells and after expansion maintained their TNF-α secreting capacity. However, for optimal expansion they required specific culture conditions to support the maintenance of stem-like and central memory T cell phenotype. In conclusion, we show that Cy+T cells are enriched in OSCC patients and report a novel cell culture protocol optimized to specifically expand and functionally maintain these cells for further functional characterization or for their exploitation in immunotherapy of OSCC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mouth Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , T-Lymphocytes, Helper-Inducer/immunology , Tumor Necrosis Factor-alpha/metabolism , Adult , Aged , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Separation , Cells, Cultured , Female , Humans , Immunologic Memory , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Mouth Neoplasms/blood , Mouth Neoplasms/pathology , Phenotype , Squamous Cell Carcinoma of Head and Neck/blood , Squamous Cell Carcinoma of Head and Neck/pathology , T-Lymphocytes, Helper-Inducer/metabolism
15.
Vaccine ; 39(33): 4742-4750, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34049733

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) results in a loss of humoral immunity and subsequent risk for severe infections. Thus, re-vaccination is required but may fail due to incomplete immune reconstitution. We retrospectively analyzed predictors of immune response to primary vaccination applied according to the EBMT (European Blood and Marrow Transplantation Group) recommendations. Serologic response to vaccination against diphtheria (D), tetanus (T), Bordetella pertussis (aP) and Haemophilus influenzae (Hib) (administrated as combined DTaP-Hib-IPV vaccination) was studied in 84 alloHSCT patients transplanted between 2008 and 2015 (age at alloHSCT: 18.6-70.6 years). All patients with a relapse-free survival of ≥9 months, at least 3 consecutive vaccinations and absence of intravenous immunoglobulin administration within 3 months before and after vaccination met the primary inclusion criteria. Additionally, immunological response to a pneumococcal conjugate vaccine was analyzed in a subgroup of 67 patients. Patients' characteristics at the time of first vaccination were recorded. Responses were measured as vaccine-specific antibody titers. Regarding DTaP-Hib-IPV vaccination, 89.3% (n = 75) of all patients achieved protective titers to at least 3 of the 4 vaccine components and were thus considered responders. 10.7% (n = 9) of the patients were classified as non-responders with positive immune response to less than 3 components. Highest response was observed for Hib (97.4%), tetanus (95.2%) and pneumococcal vaccination (83.6%) while only 68.3% responded to vaccination against Bordetella pertussis. Significant risk factors for failure of vaccination response included low B cell counts (p < 0.001; cut-off: 0.05 B cells/nl) and low IgG levels (p = 0.026; mean IgG of responders 816 mg/dl vs. 475 mg/dl of non-responders). Further, a trend was observed that prior cGvHD impairs vaccination response as 88.9% of the non-responders but only 54.7% of the responders had prior cGvHD (p = 0.073). The results demonstrate, that the currently proposed vaccination strategy leads to seroprotection in the majority of alloHSCT patients.


Subject(s)
Diphtheria , Haemophilus Vaccines , Hematopoietic Stem Cell Transplantation , Adult , Antibodies, Bacterial , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Infant , Poliovirus Vaccine, Inactivated , Retrospective Studies , Vaccination , Vaccines, Combined , Vaccines, Conjugate
16.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33789089

ABSTRACT

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Subject(s)
Chromatin/immunology , T-Lymphocytes, Regulatory/immunology , Wound Healing/immunology , Adult , Animals , Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/immunology , Cell Line , Female , Gene Expression Profiling/methods , Gene Expression Regulation/immunology , HaCaT Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, CCR8/immunology , T Follicular Helper Cells/immunology
17.
Ecol Lett ; 24(4): 761-771, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33590958

ABSTRACT

The niche dimensionality required for coexistence is often discussed in terms of the number of limiting resources. N and P limitation are benchmarks for studying phytoplankton interactions. However, it is generally agreed that limitation by small numbers of resources cannot explain the high phytoplankton diversity observed in nature. Here, we parameterised resource competition models using experimental data for six phytoplankton species grown in monoculture with nine potential limiting resources. We tested predicted species biomass from these models against observations in two-species experimental mixtures. Uptake rates were similar across species, following the classic Redfield ratio. Model accuracy levelled out at around three to five resources suggesting the minimum dimensionality of this system. The models included the resources Fe, Mg, Na and S. Models including only N and P always performed poorly. These results suggest that high-dimensional information about resource limitation despite stoichiometric constraints may be needed to accurately predict community assembly.


Subject(s)
Phosphorus , Phytoplankton , Biomass , Nitrogen
19.
Nat Commun ; 11(1): 402, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964861

ABSTRACT

Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Gene Regulatory Networks , Hematopoiesis/genetics , Nucleosomes/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Binding Sites/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Healthy Volunteers , Hematopoietic Stem Cells/physiology , Humans , Leukapheresis , Protein Domains , RNA-Seq
20.
Immunity ; 52(2): 295-312.e11, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31924477

ABSTRACT

Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes. Global chromatin profiling of nonlymphoid tissue Treg cells and the two precursor stages revealed a stepwise acquisition of chromatin accessibility and reprogramming toward the nonlymphoid-tissue Treg cell phenotype. Mechanistically, we identified and validated the transcription factor Batf as the driver of the molecular tissue program in the precursors. Understanding this tissue development program will help to harness regenerative properties of tissue Treg cells for therapy.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Lymph Nodes/immunology , Spleen/immunology , T-Lymphocytes, Regulatory/cytology , Adoptive Transfer , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation/genetics , Chromatin/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mice , Organ Specificity/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...