Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 112(12): 4035-43, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22466309

ABSTRACT

Increasing age can influence the interaction of muscle fascicles and tendon during dynamic movements. The object of the present study was to examine occurrence and possible reasons for the age-specific behavior of fascicles and tendons and their interaction during hopping with different intensities. Nine young and 24 elderly subjects performed repetitive hopping with maximal effort as well as with 50, 65, 75 and 90 % intensities. During hopping joint kinematics and ground reaction, forces were measured together with recordings of ultrasound images of both the fascicle and the muscle-tendon junction part of the gastrocnemius medialis (GaM) muscle. The results showed that fascicle behavior during the braking phase of hopping was clearly age specific in nature with more fascicle shortening in the young (p < 0.001). In addition, the fascicle shortening increased in young subjects with increasing intensity (p < 0.05). At the instant of ground contact, the elderly subjects demonstrated decreased fascicle length with increasing hopping intensity (p < 0.01). Thereafter in the braking phase, the elderly showed much smaller changes in fascicle length as compared to the young. In contrast to the fascicles, the GaM outer tendon did not show major age-specific differences in stretching and shortening amplitudes during hopping although the peak tendon forces were clearly lower in the elderly (p < 0.001). These results suggest that GaM outer tendon behavior is not influenced greatly with increasing age. It is further suggested that when aging modifies the fascicle-tendon interaction, it is primarily due to the age-specific difference in the fascicle level. This notion poses a question that as compared to the young, the elderly individuals may have a different fascicle behavior for optimal SSC locomotion such as hopping.


Subject(s)
Locomotion/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Adult , Age Factors , Aged , Biomechanical Phenomena , Case-Control Studies , Exercise/physiology , Humans , Leg/diagnostic imaging , Leg/physiology , Male , Muscle, Skeletal/diagnostic imaging , Tendons/diagnostic imaging , Ultrasonography
2.
J Electromyogr Kinesiol ; 21(3): 483-91, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21458294

ABSTRACT

It is well documented that increasing effort during exercise is characterized by an increase in electromyographic activity of the relevant muscles. How aging influences this relationship is a matter of great interest. In the present study, nine young and 24 elderly subjects did repetitive hopping with maximal effort as well as with 50%, 65%, 75% and 90% intensities. During hopping joint kinematics were measured together with electromyographic activity (EMG) from the soleus, gastrocnemius medialis, gastrocnemius lateralis and tibialis anterior muscles. The results showed that agonist activation increased in both age groups with increasing intensity. The highest jumping efficiency (EMG ratio of the braking phase to the push off-phase activation) was achieved with moderate hopping intensities (65-75%) in both the young and in the elderly. Age-comparison showed that elderly subjects had high agonist preactivation but thereafter lower activation during the braking phase. Antagonist coactivation was minimal and did not show age- or intensity-specificity. The elderly had more flexed knees at the instant of ground contact. When intensity increased, the elderly also plantarflexed their ankles more before ground contact. Ankle joint stiffness was lower in elderly subjects only in high hopping intensities (90% and Max). These results confirm that age-specific agonist muscle activation profiles exist during hopping even when exercise intensities are matched on the relative scale. The results suggest further that the elderly can adjust their reduced neuromuscular capacity to match the demands set by different exercise intensities.


Subject(s)
Aging/physiology , Ankle Joint/physiology , Locomotion/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Adult , Aged , Aged, 80 and over , Elastic Modulus/physiology , Female , Humans , Male , Middle Aged
3.
Eur J Appl Physiol ; 108(2): 273-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19777252

ABSTRACT

The purpose of this study was to examine the reliability and validity of the "panoramic" brightness mode ultrasonography (US) method to detect training-induced changes in muscle cross-sectional area (CSA) by comparison with results obtained using magnetic resonance imaging (MRI). Out of 27 young male volunteers, 20 subjects were assigned to training group and seven to non-training control group. Muscle CSAs of vastus lateralis were analyzed by MRI and US before and after 21 weeks of either heavy resistance training or control period. Measured by both the US and MRI, the resistance training induced significant increases (~13-14%, P < 0.001) in muscle CSA, whereas no changes were observed in control group. A high repeatability was found between the two consequent US measurements (intraclass correlation coefficient, ICC of 0.997) with standard error of measurement (SEM) of 0.38 cm(2) and smallest detectable difference of 1.1 cm(2). Validity of the US method against MRI in assessing CSA of VL produced ICC of 0.905 and SEM of 0.87 cm(2) with high limits of agreement analyzed by Bland and Altman method. However, the MRI produced systematically (10 +/- 4%, P < 0.01) larger CSA values than the US method. The US showed high agreement against MRI in detecting changes in muscle CSA (ICC of 0.929, SEM of 0.94 cm(2)). The results of this study showed that the panoramic US method provides repeatable measures of a muscle CSA although MRI produced larger absolute CSA values. Moreover, this US method detects training-induced changes in muscle CSA with a comparable degree of precision to MRI.


Subject(s)
Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Humans , Magnetic Resonance Imaging , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...