Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 112(9): 2404-2411, 2023 09.
Article in English | MEDLINE | ID: mdl-37295605

ABSTRACT

Understanding binding related changes in antibody conformations is important for epitope prediction and antibody refinement. The increase of available data in the PDB allowed a more detailed investigation of the conformational landscape for free and bound antibodies. A dataset containing a total of 835 unique PDB entries of antibodies that were crystallized in complex with their antigen and in a free state was constructed. It was examined for binding related conformation changes. We present further evidence supporting the theory of a pre-existing-equilibrium in experimental data. Multiple sequence alignments did not show binding induced tendencies in the solvent accessibility of residues in any specific position. Evaluating the changes in solvent accessibility per residue revealed a certain binding induced increase for several amino acids. Antibody-antigen interaction statistics were established and quantify a significant directional asymmetry between many interacting antibody and antigen residue pairs, especially a richness in tyrosine in the antibody epitope compared to its paratope. This asymmetry could potentially facilitate an increase in the success rate of computationally guided antibody refinement.


Subject(s)
Antibodies , Antigens , Epitopes , Binding Sites, Antibody , Molecular Conformation , Protein Conformation
2.
J Chromatogr A ; 1649: 462234, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34038775

ABSTRACT

Today proteins are possibly the most important class of substances. Yet new tasks for proteins are still often solved by trial-and-error approaches. However, in some areas these euphemistically called "screening approaches" are not suitable. E.g. stability tests just take too long and therefore require a more strategic, target-orientated concept. This concept is available by grouping proteins according to their physicochemical properties and then pulling out the right drawer for new tasks. These properties include size, then charge and hydrophobicity as well as their patchinesses, and the degree of order. In addition, solubility, the content of (free) enthalpy, aromatic-amino-acid- and α/ß-frequency as well as helix capping, and corresponding patchiness, the number of specific motifs and domains as well as the typical concentration range can be helpful to discriminate between different groups of proteins. Analyzing correlations will reduce the necessary amount of parameters and additional ones, which may be still undiscovered at the present time, can be identified looking at protein subgroups with similar physicochemical properties which still behave heterogeneously. Step-by-step the methodology will be improved. Possibly protein stability will be the driver of this process, but all other areas such as production, purification and analytics including sample pre-treatment and the choice of appropriate separation conditions for e.g. chromatography and electrophoresis will profit from a rational strategy.


Subject(s)
Proteins/analysis , Amino Acids/analysis , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry/methods , Proteins/chemistry , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL