Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Healthc Technol Lett ; 11(2-3): 33-39, 2024.
Article in English | MEDLINE | ID: mdl-38638494

ABSTRACT

The integration of Augmented Reality (AR) into daily surgical practice is withheld by the correct registration of pre-operative data. This includes intelligent 3D model superposition whilst simultaneously handling real and virtual occlusions caused by the AR overlay. Occlusions can negatively impact surgical safety and as such deteriorate rather than improve surgical care. Robotic surgery is particularly suited to tackle these integration challenges in a stepwise approach as the robotic console allows for different inputs to be displayed in parallel to the surgeon. Nevertheless, real-time de-occlusion requires extensive computational resources which further complicates clinical integration. This work tackles the problem of instrument occlusion and presents, to the authors' best knowledge, the first-in-human on edge deployment of a real-time binary segmentation pipeline during three robot-assisted surgeries: partial nephrectomy, migrated endovascular stent removal, and liver metastasectomy. To this end, a state-of-the-art real-time segmentation and 3D model pipeline was implemented and presented to the surgeon during live surgery. The pipeline allows real-time binary segmentation of 37 non-organic surgical items, which are never occluded during AR. The application features real-time manual 3D model manipulation for correct soft tissue alignment. The proposed pipeline can contribute towards surgical safety, ergonomics, and acceptance of AR in minimally invasive surgery.

2.
Ann Surg ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390732

ABSTRACT

OBJECTIVE: Develop a pioneer surgical anonymization algorithm for reliable and accurate real-time removal of out-of-body images, validated across various robotic platforms. SUMMARY BACKGROUND DATA / BACKGROUND: The use of surgical video data has become common practice in enhancing research and training. Video sharing requires complete anonymization, which, in the case of endoscopic surgery, entails the removal of all nonsurgical video frames where the endoscope can record the patient or operating room staff. To date, no openly available algorithmic solution for surgical anonymization offers reliable real-time anonymization for video streaming, which is also robotic-platform- and procedure-independent. METHODS: A dataset of 63 surgical videos of 6 procedures performed on four robotic systems was annotated for out-of-body sequences. The resulting 496.828 images were used to develop a deep learning algorithm that automatically detected out-of-body frames. Our solution was subsequently benchmarked against existing anonymization methods. In addition, we offer a post-processing step to enhance the performance and test a low-cost setup for real-time anonymization during live surgery streaming. RESULTS: Framewise anonymization yielded an ROC AUC-score of 99.46% on unseen procedures, increasing to 99.89% after post-processing. Our Robotic Anonymization Network (ROBAN) outperforms previous state-of-the-art algorithms, even on unseen procedural types, despite the fact that alternative solutions are explicitly trained using these procedures. CONCLUSIONS: Our deep learning model ROBAN offers reliable, accurate, and safe real-time anonymization during complex and lengthy surgical procedures regardless of the robotic platform. The model can be used in real-time for surgical live streaming and is openly available.

SELECTION OF CITATIONS
SEARCH DETAIL
...