Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570969

ABSTRACT

Toxic breakdown products of young Camelina sativa (L.) Crantz, glucosinolates can eliminate microorganisms in the soil. Since microorganisms are essential for phosphate cycling, only insensitive microorganisms with phosphate-solubilizing activity can improve C. sativa's phosphate supply. In this study, 33P-labeled phosphate, inductively coupled plasma mass spectrometry and pot experiments unveiled that not only Trichoderma viride and Pseudomonas laurentiana used as phosphate-solubilizing inoculants, but also intrinsic soil microorganisms, including Penicillium aurantiogriseum, and the assemblies of root-colonizing microorganisms solubilized as well phosphate from apatite, trigger off competitive behavior between the organisms. Driving factors in the competitiveness are plant and microbial secondary metabolites, while glucosinolates of Camelina and their breakdown products are regarded as key compounds that inhibit the pathogen P. aurantiogriseum, but also seem to impede root colonization of T. viride. On the other hand, fungal diketopiperazine combined with glucosinolates is fatal to Camelina. The results may contribute to explain the contradictory effects of phosphate-solubilizing microorganisms when used as biofertilizers. Further studies will elucidate impacts of released secondary metabolites on coexisting microorganisms and plants under different environmental conditions.

2.
Environ Res ; 232: 116315, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37276976

ABSTRACT

With the increased global interest in sequestering carbon in soil, it is necessary to understand the composition of different pools of soil organic matter (SOM) that cycle over suitably short timeframes. To explore in detail the chemical composition of agroecologically relevant yet distinct fractions of SOM, the light fraction of SOM (LFOM), the 53-µm particulate organic matter (POM), and the mobile humic acid (MHA) fractions were sequentially extracted from agricultural soils and characterized using both 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and also Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The NMR results showed a decrease in the O-alkyl C region assigned to carbohydrates (51-110 ppm) and an increase in the aromatic region (111-161 ppm) proceeding from the LFOM to the POM and then to the MHA fraction. Similarly, based on the thousands of molecular formulae assigned to the peaks detected by FT-ICR-MS, condensed hydrocarbons were dominant only in the MHA, while aliphatic formulae were abundant in the POM and LFOM fractions. The molecular formulae of the LFOM and POM were mainly grouped in the high H/C lipid-like and aliphatic space, whereas a portion of the MHA compounds showed an extremely high (17-33, average of 25) double bond equivalent (DBE) values, corresponding to low H/C values of 0.3-0.6, representative of condensed hydrocarbons. The labile components appeared most pronounced in the POM (93% of formulae have H/C ≥ 1.5) similar to the LFOM (89% of formulae have H/C ≥ 1.5) but in contrast to the MHA (74% of formulae have H/C ≥ 1.5). The presence of both labile and recalcitrant components in the MHA fraction suggests that the stability and persistence of soil organic matter is influenced by a complex interaction of physical, chemical, and biological factors in soil. Understanding the composition and distribution of different SOM fractions can provide valuable insights into the processes that govern carbon cycling in soils, which can help inform strategies for sustainable land management and climate change mitigation.


Subject(s)
Humic Substances , Soil , Soil/chemistry , Humic Substances/analysis , Agriculture , Carbon , Mass Spectrometry , Particulate Matter/analysis
3.
J Chem Ecol ; 48(2): 219-239, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34988771

ABSTRACT

For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


Subject(s)
Meristem , Plant Roots , Benzoxazoles/chemistry , Benzoxazoles/metabolism , Benzoxazoles/pharmacology , Gene Expression , Membrane Lipids/metabolism , Membrane Lipids/pharmacology , Meristem/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Zea mays/genetics , Zea mays/metabolism
4.
Sci Rep ; 11(1): 20627, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663887

ABSTRACT

Cnidarians are characterized by the possession of stinging organelles, called nematocysts, which they use for prey capture and defense. Nematocyst discharge is controlled by a mechanosensory apparatus with analogies to vertebrate hair cells. Members of the transient receptor potential (TRPN) ion channel family are supposed to be involved in the transduction of the mechanical stimulus. A small molecule screen was performed to identify compounds that affect nematocyst discharge in Hydra. We identified several [2.2]paracyclophanes that cause inhibition of nematocyst discharge in the low micro-molar range. Further structure-activity analyses within the compound class of [2.2]paracyclophanes showed common features that are required for the inhibitory activity of the [2.2]paracyclophane core motif. This study demonstrates that Hydra can serve as a model for small molecule screens targeting the mechanosensory apparatus in native tissues.


Subject(s)
Hydra/immunology , Nematocyst/drug effects , Nematocyst/physiology , Animals , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/physiology , Cnidaria , Hydra/metabolism , Small Molecule Libraries/pharmacology , Transient Receptor Potential Channels/drug effects , Transient Receptor Potential Channels/physiology
5.
Sci Rep ; 10(1): 17140, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051570

ABSTRACT

Information on the bioavailability and -accessibility of subsoil phosphorus (P) and how soil moisture affects its utilization by plants is scarce. The current study examined whether and to which degree wheat acquires P from subsoil allocated hydroxyapatite and how this could be affected by soil moisture. We investigated the 33P uptake by growing wheat in two rhizotron trials (soil and sand) with integrated 33P-labelled hydroxyapatite hotspots over a period of 44 days using digital autoradiography imaging and liquid scintillation counting. We applied two irrigation scenarios, mimicking either rainfall via topsoil watering or subsoil water storage. The plants showed similar biomass development when grown in soil, but a reduced growth in sand rhizotrons. Total plant P(tot) stocks were significantly larger in plants grown under improved subsoil moisture supply, further evidenced by enhanced P stocks in the ears of wheat in the sand treatment due to an earlier grain filling. This P uptake is accompanied by larger 33P signals, indicating that the plants accessed the hydroxyapatite because subsoil irrigation also promoted root proliferation within and around the hotspots. We conclude that even within a single season plants access subsoil mineral P sources, and this process is influenced by water management.

6.
Methods Mol Biol ; 2030: 403-414, 2019.
Article in English | MEDLINE | ID: mdl-31347134

ABSTRACT

In this chapter we describe a method for quantification of 20 proteinogenic amino acids by liquid chromatography-mass spectrometry which affords neither derivatization nor the use of organic solvents. Analysis of the underivatized amino acids is performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in the positive ESI mode. Separation is achieved on a strong cation exchange (SCX) column (Luna 5 µ SCX 100 Å) with 5% acetic acid in water (A) and 75 mM ammonium acetate in water (B). Quantification is accomplished by use of d2-phenylalanine as internal standard achieving limits of detection of 5-50 nM. The method was successfully applied for the determination of proteinogenic amino acids in plant extracts.


Subject(s)
Amino Acids/analysis , Plant Extracts/agonists , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Amino Acids/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Limit of Detection , Reproducibility of Results , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/instrumentation , Tandem Mass Spectrometry/instrumentation
7.
Anal Bioanal Chem ; 411(6): 1253-1260, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30617405

ABSTRACT

Phosphorus (P) research still lacks techniques for rapid imaging of P use and allocation in different soil, sediment, and biological systems in a quantitative manner. In this study, we describe a time-saving and cost-efficient digital autoradiographic method for in situ quantitative imaging of 33P radioisotopes in plant materials. Our method combines autoradiography of the radiotracer applications with additions of commercially available 14C polymer references to obtain 33P activities in a quantitative manner up to 2000 Bq cm-2. Our data show that linear standard regressions for both radioisotopes are obtained, allowing the establishment of photostimulated luminescence equivalence between both radioisotopes with a factor of 9.73. Validating experiments revealed a good agreement between the calculated and applied 33P activity (R2 = 0.96). This finding was also valid for the co-exposure of 14C polymer references and 33P radioisotope specific activities in excised plant leaves for both maize (R2 = 0.99) and wheat (R2 = 0.99). The outlined autoradiographic quantification procedure retrieved 100% ± 12% of the 33P activity in the plant leaves, irrespective of plant tissue density. The simplicity of this methodology opens up new perspectives for fast quantitative imaging of 33P in biological systems and likely, thus, also for other environmental compartments.


Subject(s)
Phosphoric Acids/analysis , Phosphorus Radioisotopes/analysis , Plant Leaves/chemistry , Triticum/chemistry , Zea mays/chemistry , Autoradiography/methods , Carbon Radioisotopes/analysis , Phosphorus/analysis , Polymers/analysis
8.
J Contam Hydrol ; 213: 62-72, 2018 06.
Article in English | MEDLINE | ID: mdl-29789148

ABSTRACT

We present the results of a two years study on the contamination of the Luxembourg Sandstone aquifer by metolachlor-ESA and metolachlor-OXA, two major transformation products of s-metolachlor. The aim of the study was twofold: (i) assess whether elevated concentrations of both transformation products (up to 1000 ng/l) were due to fast flow breakthough events of short duration or the signs of a contamination of the entire aquifer and (ii) estimate the time to trend reversal once the parent compound was withdrawn from the market. These two questions were addressed by a combined use of groundwater monitoring, laboratory experiments and numerical simulations of the fate of the degradation products in the subsurface. Twelve springs were sampled weekly over an eighteen month period, and the degradation rates of both the parent compound and its transformation products were measured on a representative soil in the laboratory using a radiolabeled precursor. Modelling with the numeric code PEARL simulating pesticide fate in soil coupled to a simple transfer function model for the aquifer compartment, and calibrated from the field and laboratory data, predicts a significant damping by the aquifer of the peaks of concentration of both metolachlor-ESA and -OXA leached from the soil. The time to trend reversal following the ban of s-metolachlor in spring protection zones should be observed before the end of the decade, while the return of contaminant concentrations below the drinking water limit of 100 ng/l however is expected to last up to twelve years. The calculated contribution to total water discharge of the fast-flow component from cropland and short-circuiting the aquifer was small in most springs (median of 1.2%), but sufficient to cause additional peaks of concentration of several hundred nanograms per litre in spring water. These peaks are superimposed on the more steady contamination sustained by the base flow, and should cease immediately once application of the parent compound stops.


Subject(s)
Acetamides/analysis , Acetamides/metabolism , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Drinking Water , Groundwater/analysis , Herbicides/analysis , Luxembourg , Models, Theoretical , Natural Springs , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism
9.
Appl Microbiol Biotechnol ; 102(3): 1229-1239, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29264775

ABSTRACT

Rhamnolipids are biosurfactants consisting of rhamnose (Rha) molecules linked through a ß-glycosidic bond to 3-hydroxyfatty acids with various chain lengths, and they have an enormous potential for various industrial applications. The best known native rhamnolipid producer is the human pathogen Pseudomonas aeruginosa, which produces short-chain rhamnolipids mainly consisting of a Rha-Rha-C10-C10 congener. Bacteria from the genus Burkholderia are also able to produce rhamnolipids, which are characterized by their long-chain 3-hydroxyfatty acids with a predominant Rha-Rha-C14-C14 congener. These long-chain rhamnolipids offer different physicochemical properties compared to their counterparts from P. aeruginosa making them very interesting to establish novel potential applications. However, widespread applications of rhamnolipids are still hampered by the pathogenicity of producer strains and-even more important-by the complexity of regulatory networks controlling rhamnolipid production, e.g., the so-called quorum sensing system. To overcome encountered challenges of the wild type, the responsible genes for rhamnolipid biosynthesis in Burkholderia glumae were heterologously expressed in the non-pathogenic Pseudomonas putida KT2440. Our results show that long-chain rhamnolipids from Burkholderia spec. can be produced in P. putida. Surprisingly, the heterologous expression of the genes rhlA and rhlB encoding an acyl- and a rhamnosyltransferase, respectively, resulted in the synthesis of two different mono-rhamnolipid species containing one or two 3-hydroxyfatty acid chains in equal amounts. Furthermore, mixed biosynthetic rhlAB operons with combined genes from different organisms were created to determine whether RhlA or RhlB is responsible to define the fatty acid chain lengths in rhamnolipids.


Subject(s)
Burkholderia/chemistry , Glycolipids/biosynthesis , Pseudomonas putida/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways , Operon , Pseudomonas putida/genetics , Quorum Sensing , Surface-Active Agents/metabolism
10.
Plant Signal Behav ; 12(8): e1358843, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28786736

ABSTRACT

A facultative, microbial micro-community colonizing roots of Abutilon theophrasti Medik. supports the plant in detoxifying hydroxylated benzoxazolinones. The root micro-community is composed of several fungi and bacteria with Actinomucor elegans as a dominant species. The yeast Papiliotrema baii and the bacterium Pantoea ananatis are actively involved in the detoxification of hydroxylated benzoxazolinones by generating H2O2. At the root surface, laccases, peroxidases and polyphenol oxidases cooperate for initiating polymerization reactions, whereby enzyme combinations seem to differ depending on the hydroxylation position of BOA-OHs. A glucosyltransferase, able to glucosylate the natural benzoxazolinone detoxification intermediates BOA-5- and BOA-6-OH, is thought to reduce oxidative overshoots by damping BOA-OH induced H2O2 generation. Due to this detoxification network, growth of Abutilon theophrasti seedlings is not suppressed by BOA-OHs. Polymer coats have no negative influence. Alternatively, quickly degradable 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one can be produced by the micro-community member Pantoea ananatis at the root surfaces. The results indicate that Abutilon theophrasti has evolved an efficient strategy by recruiting soil microorganisms with special abilities for different detoxification reactions which are variable and may be triggered by the allelochemical´s structure and by environmental conditions.


Subject(s)
Benzoxazoles/pharmacology , Malvaceae/microbiology , Pheromones/pharmacology , Plant Roots/microbiology , Benzoxazoles/chemistry , Catalase/metabolism , Chromatography, High Pressure Liquid , Glucosides/metabolism , Hydrogen Peroxide/metabolism , Hydroxylation , Isomerism , Pheromones/chemistry , Plant Extracts/chemistry , Plant Roots/enzymology , Plant Shoots/drug effects , Plant Shoots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Species Specificity
11.
Commun Integr Biol ; 10(3): e1302633, 2017.
Article in English | MEDLINE | ID: mdl-28702124

ABSTRACT

Pantoea ananatis is a bacterium associated with other microorganisms on Abutilon theophrasti Medik. roots. It converts 6-hydroxybenzoxazolin-2(3H)-one (BOA-6-OH), a hydroxylated derivative of the allelochemical benzoxazolin-2(3H)-one, into 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one. The compound was identified by NMR and mass spectrometric methods. In vitro synthesis succeeded with Pantoea protein, with isolated proteins from the Abutilon root surface or with horseradish peroxidase in the presence of nitrite and H2O2. Nitro-BOA-6-OH is completely degraded further by Pantoea ananatis and Abutilon root surface proteins. Under laboratory conditions, 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one inhibits Lepidium sativum seedling growth whereas Abutilon theophrasti is much less affected. Although biodegradable, an agricultural use of 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one is undesirable because of the high toxicity of nitro aromatic compounds to mammals.

12.
Chemosphere ; 172: 310-315, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28086159

ABSTRACT

The soil-plant transfer of Cs-137 and Sr-90 in different crops was determined with respect to the present-day amendment practice of using digestate from biogas fermenters. The studies were performed using large lysimeters filled with undisturbed luvisol monoliths. In contrast to the conservative tracer, Br-, neither of the studied radionuclides showed a significant vertical translocation nor effect of the applied digestate amendment compared to a non-amended control was found. Furthermore, no significant plant uptake was measured for both nuclides in wheat or oat as indicated by the low transfer factors between soil-shoot for Cs-137 (TF 0.001-0.010) and for Sr-90 (0.10-0.51). The transfer into nutritionally relevant plant parts was even lower with transfer factors for soil-grain for Cs-137 (TF 0.000-0.001) and for Sr-90 (0.01-0.06). Hence, the amendment with biogas digestate is unfortunately not an option to further reduce plant uptake of these radionuclides in agricultural crops, but it does not increase plant uptake either.


Subject(s)
Cesium Radioisotopes/chemistry , Cesium Radioisotopes/metabolism , Soil Pollutants, Radioactive/chemistry , Soil Pollutants, Radioactive/metabolism , Soil/chemistry , Strontium Radioisotopes/chemistry , Strontium Radioisotopes/metabolism , Biodegradation, Environmental , Biofuels , Biological Transport , Cesium Radioisotopes/isolation & purification , Crops, Agricultural/metabolism , Soil Pollutants, Radioactive/isolation & purification , Strontium Radioisotopes/isolation & purification
13.
Appl Microbiol Biotechnol ; 101(7): 2865-2878, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27988798

ABSTRACT

The human pathogenic bacterium Pseudomonas aeruginosa produces rhamnolipids, glycolipids with functions for bacterial motility, biofilm formation, and uptake of hydrophobic substrates. Rhamnolipids represent a chemically heterogeneous group of secondary metabolites composed of one or two rhamnose molecules linked to one or mostly two 3-hydroxyfatty acids of various chain lengths. The biosynthetic pathway involves rhamnosyltransferase I encoded by the rhlAB operon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) followed by their coupling to one rhamnose moiety. The resulting mono-rhamnolipids are converted to di-rhamnolipids in a third reaction catalyzed by the rhamnosyltransferase II RhlC. However, the mechanism behind the biosynthesis of rhamnolipids containing only a single fatty acid is still unknown. To understand the role of proteins involved in rhamnolipid biosynthesis the heterologous expression of rhl-genes in non-pathogenic Pseudomonas putida KT2440 strains was used in this study to circumvent the complex quorum sensing regulation in P. aeruginosa. Our results reveal that RhlA and RhlB are independently involved in rhamnolipid biosynthesis and not in the form of a RhlAB heterodimer complex as it has been previously postulated. Furthermore, we demonstrate that mono-rhamnolipids provided extracellularly as well as HAAs as their precursors are generally taken up into the cell and are subsequently converted to di-rhamnolipids by P. putida and the native host P. aeruginosa. Finally, our results throw light on the biosynthesis of rhamnolipids containing one fatty acid, which occurs by hydrolyzation of typical rhamnolipids containing two fatty acids, valuable for the production of designer rhamnolipids with desired physicochemical properties.


Subject(s)
Biosynthetic Pathways/genetics , Fatty Acids/metabolism , Glycolipids/biosynthesis , Glycolipids/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Bacterial Proteins/genetics , Chromatography, High Pressure Liquid , Decanoates/metabolism , Glycolipids/chemistry , Glycolipids/isolation & purification , Mutation , Operon , Pseudomonas aeruginosa/genetics , Quorum Sensing , Rhamnose/analogs & derivatives , Rhamnose/metabolism , Surface-Active Agents
15.
Plant Signal Behav ; 11(1): e1119962, 2016.
Article in English | MEDLINE | ID: mdl-26645909

ABSTRACT

The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.


Subject(s)
Benzoxazoles/metabolism , Zea mays/metabolism , Acetophenones/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Biological Assay , Blotting, Western , Carbamates/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Chromatography, High Pressure Liquid , Cytosol/drug effects , Cytosol/metabolism , Diacetyl/pharmacology , Ethacrynic Acid/pharmacology , Fusarium/drug effects , Fusarium/physiology , Glucosides/metabolism , Glutathione Transferase/metabolism , Glycosylation/drug effects , Inactivation, Metabolic/drug effects , Peroxidases/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Seedlings/drug effects , Seedlings/metabolism , Zea mays/drug effects
16.
Sci Total Environ ; 544: 192-202, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26657365

ABSTRACT

Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting (14)C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides.


Subject(s)
Charcoal/chemistry , Pesticides/analysis , Refuse Disposal/methods , Soil Pollutants/analysis , Agriculture , Benzothiadiazines/analysis , Biphenyl Compounds/analysis , Niacinamide/analogs & derivatives , Niacinamide/analysis , Pyrimidines/analysis , Soil/chemistry
17.
Biodegradation ; 26(2): 139-50, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25715827

ABSTRACT

Recently we showed that during the degradation of sulfadiazine (SDZ) by Microbacterium lacus strain SDZm4 the principal metabolite 2-aminopyrimidine (2-AP) accumulated to the same molar amount in the culture as SDZ disappeared (Tappe et al. Appl Environ Microbiol 79:2572-2577, 2013). Although 2-AP is considered a recalcitrant agent, long-term lysimeter experiments with (14)C-pyrimidine labeled SDZ ([(14)C]pyrSDZ) provided indications for substantial degradation of the pyrimidine moiety of the SDZ molecule. Therefore, we aimed to enrich 2-AP degrading bacteria and isolated a pure culture of a Terrabacter-like bacterium, denoted strain 2APm3. When provided with (14)C-labeled SDZ, M. lacus strain SDZm4 degraded [(14)C]pyrSDZ to [(14)C]2-AP. Resting cells of 2APm3 at a concentration of 5 × 10(6) cells ml(-1) degraded 62 µM [(14)C]2-AP to below the detection limit (0.6 µM) within 5 days. Disappearance of 2-AP resulted in the production of at least two transformation products (M1 and M2) with M2 being identified as 2-amino-4-hydroxypyrimidine. After 36 days, the transformation products disappeared and 83 % of the applied [(14)C]2-AP radioactivity was trapped as (14)CO2. From this we conclude that a consortium of two species should be able to almost completely degrade SDZ in soils.


Subject(s)
Genes, Bacterial , Micrococcaceae/metabolism , Pyrimidines/metabolism , RNA, Ribosomal, 16S/genetics , Soil Pollutants/metabolism , Sulfadiazine/metabolism , Biodegradation, Environmental , Carbon Dioxide/metabolism , Carbon Radioisotopes , Gas Chromatography-Mass Spectrometry , Humans , Phylogeny
18.
J Chem Ecol ; 40(11-12): 1286-98, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25432667

ABSTRACT

Abutilon theophrasti Medik., previously found to be rather insensitive to benzoxazinoid containing rye mulch and the allelochemical benzoxazolin-2(3H)-one (BOA), can be associated with the zygomycete Actinomucor elegans, whereby the fungus colonizes the root relatively superficially and mainly in the maturation zone. The fungus mitigates necrosis of the cotyledons when seedlings are incubated with 2 mM BOA, in contrast to those that lack the fungus. In liquid cultures of the fungus, tryptophan was identified. The accumulation of tryptophan is increased in presence of BOA. This amino acid seems to be important in protecting Abutilon against BOA and its derivatives since it suppressed the accumulation of BOA derived, highly toxic 2-aminophen-oxazin-3-one (APO) in the medium and on the root surface during BOA incubations of Abutilon seedlings. Although A. elegans is insensitive to BOA and APO, the fungus is not able to protect the plant against harmful effects of APO, when seedlings are treated with the compound. Abutilon can detoxify BOA via BOA-6-OH glucosylation probably by a cell wall associated glucosyltransferase, but only low amounts of the product accumulate. Low tryptophan concentrations can contribute to a degradation of the toxic intermediate BOA-6-OH by Fenton reactions, whereby the amino acid is oxidized. One of the oxidation products was identified as 4(1H)-quinolinone, which is the core substructure of the quorum sensing molecule 2-heptyl-3-hydroxy-4-quinolone. The mutualistic association of Abutilon theophrasti with Actinomucor elegans is considered as opportunistic and facultative. Such plant-fungus associations depend rather likely on environmental conditions, such as the mode of fertilization.


Subject(s)
Benzoxazoles/metabolism , Malvaceae/metabolism , Malvaceae/microbiology , Mucorales/physiology , Pheromones/metabolism , Malvaceae/genetics , Molecular Sequence Data , Plant Roots/metabolism , Plant Roots/microbiology , Sequence Analysis, DNA
19.
Chemosphere ; 95: 470-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24210597

ABSTRACT

Veterinary antibiotics administered to livestock can be unintentionally released into the environment, for example by the application of manure to soils. The fate of such antibiotics in soils is mostly determined by sorption and degradation processes, including transformation. There is a need to further examine the combined transformation and sorption behavior of these emerging pollutants in soils. Long-term batch sorption experiments with the (14)C-radiolabeled antibiotic sulfadiazine enabled us to simultaneously trace the sorption and transformation dynamics of sulfadiazine. The parent compound and the transformation products were analyzed in the liquid phase and in the extracts from the solid phase after a sequential extraction. We found that of up to six transformation products were formed during degradation and that these products exhibited quite different dynamics in the two soils. Transformation products were formed rapidly and were extractable from the solid phase. We observed identical sets of the transformation products in both phases. The input concentration influenced the course of transformation of the parent substance. We present a detailed analysis including a mathematical description and derive regulatory kinetic endpoints for predicting environmental concentrations.


Subject(s)
Anti-Bacterial Agents/analysis , Models, Chemical , Soil Pollutants/analysis , Soil/chemistry , Sulfadiazine/analysis , Veterinary Drugs/analysis , Adsorption , Kinetics
20.
J Environ Qual ; 43(4): 1450-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25603092

ABSTRACT

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) groundwater monitoring in the Zwischenscholle aquifer in western Germany revealed concentrations exceeding the threshold value of 0.1 µg L and increasing concentration trends even 20 yr after its ban. Accordingly, the hypothesis was raised that a continued release of bound atrazine residues from the soil into the Zwischenscholle aquifer in combination with the low atrazine degradation in groundwater contributes to elevated atrazine in groundwater. Three soil cores reaching down to the groundwater table were taken from an agricultural field where atrazine had been applied before its ban in 1991. Atrazine residues were extracted from eight soil layers down to 300 cm using accelerated solvent extraction and analyzed using liquid chromatography-tandem mass spectrometry. Extracted atrazine concentrations ranged between 0.2 and 0.01 µg kg for topsoil and subsoil, respectively. The extracted mass from the soil profiles represented 0.07% of the applied mass, with 0.01% remaining in the top layer. A complete and instantaneous remobilization of atrazine residues and vertical mixing with the groundwater body below would lead to atrazine groundwater concentrations of 0.068 µg L. Considering the area where atrazine was applied in the region and assuming instantaneous lateral mixing in the Zwischenscholle aquifer would result in a mean groundwater concentration of 0.002 µg L. A conservative estimation suggests an atrazine half-life value of about 2 yr for the soil zone, which significantly exceeds highest atrazine half-lives found in the literature (433 d for subsurface soils). The long-term environmental behavior of atrazine and its metabolites thus needs to be reconsidered.

SELECTION OF CITATIONS
SEARCH DETAIL
...