Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(8): 4349-4369, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32202101

ABSTRACT

Muscarinic M3 receptor antagonists and inverse agonists displaying high affinity and subtype selectivity over the antitarget M2 are valuable pharmacological tools and may enable improved treatment of chronic obstructive pulmonary disease (COPD), asthma, or urinary incontinence. On the basis of known M3 antagonists comprising a piperidine or quinuclidine unit attached to a biphenyl carbamate, 5-fluoro substitution was responsible for M3 subtype selectivity over M2, while 3'-chloro substitution substantially increased affinity through a σ-hole interaction. Resultantly, two piperidinyl- and two quinuclidinium-substituted biphenyl carbamates OFH243 (13n), OFH244 (13m), OFH3911 (14n), and OFH3912 (14m) were discovered, which display two-digit picomolar affinities with Ki values from 0.069 to 0.084 nM, as well as high selectivity over the M2 subtype (46- to 68-fold). While weak inverse agonistic properties were determined for the biphenyl carbamates 13m and 13n, neutral antagonism was observed for 14m and 14n and tiotropium under identical assay conditions.


Subject(s)
Aminobiphenyl Compounds/chemistry , Drug Inverse Agonism , Halogens/chemistry , Muscarinic Agonists/chemistry , Muscarinic Antagonists/chemistry , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Aminobiphenyl Compounds/pharmacology , Animals , Caco-2 Cells , HEK293 Cells , Halogens/pharmacology , Humans , Male , Molecular Docking Simulation/methods , Muscarinic Agonists/metabolism , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Protein Binding/physiology , Protein Structure, Secondary , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M3/metabolism
2.
Proc Natl Acad Sci U S A ; 115(47): 12046-12050, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30404914

ABSTRACT

Drugs that treat chronic obstructive pulmonary disease by antagonizing the M3 muscarinic acetylcholine receptor (M3R) have had a significant effect on health, but can suffer from their lack of selectivity against the M2R subtype, which modulates heart rate. Beginning with the crystal structures of M2R and M3R, we exploited a single amino acid difference in their orthosteric binding pockets using molecular docking and structure-based design. The resulting M3R antagonists had up to 100-fold selectivity over M2R in affinity and over 1,000-fold selectivity in vivo. The crystal structure of the M3R-selective antagonist in complex with M3R corresponded closely to the docking-predicted geometry, providing a template for further optimization.


Subject(s)
Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/genetics , Acetylcholine/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Drug Design , Humans , Molecular Docking Simulation/methods , Muscarinic Antagonists/chemistry , Muscarinic Antagonists/metabolism , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/metabolism
3.
Chemistry ; 23(40): 9647-9656, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28440884

ABSTRACT

The radical arylation of anilines and pyrroles can be achieved under transition-metal- and catalyst-free conditions by using aryldiazotates in strongly alkaline aqueous solutions. The aryldiazotates act as protected diazonium ions, which do not undergo azo coupling with electron-rich aromatic substrates, but can still serve as an aryl radical source at slightly elevated temperatures. Based on an improved preparation of aryldiazotates in aqueous solution, homolytic aromatic substitutions of anilines and pyrroles were conducted with good overall yields and high regioselectivity. Moreover, DFT calculations provided further mechanistic insights.

4.
J Org Chem ; 81(20): 9785-9791, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27643627

ABSTRACT

Although general interest in radical arylation reactions has grown rapidly in recent years, poor regioselectivities and the need to use a large excess of the radical-accepting arene have hindered their application to substituted benzenes. We now describe experimental and computational investigations into the substituent effects that lead to regioselective addition based on the recent discovery of anilines as outstanding substrates for radical arylations.

5.
J Org Chem ; 79(5): 2314-20, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24524356

ABSTRACT

Substituted 2-aminobiphenyls have been prepared from arylhydrazine hydrochlorides and anilines in biphasic radical arylation reactions with dioxygen from air as a most simple and readily available oxidant. Under optimized conditions, the free amino functionality of the aniline leads to high ortho:meta regioselectivities, now even for anilines bearing a donor substituent in the para position. Finally, the mild and metal-free new access to aminobiphenyls was shown to be applicable on a gram scale.


Subject(s)
Aminobiphenyl Compounds/chemistry , Aminobiphenyl Compounds/chemical synthesis , Aniline Compounds/chemistry , Hydrazines/chemistry , Oxygen/chemistry , Air , Catalysis , Molecular Structure , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...