Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Biotechnol Bioeng ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39295202

ABSTRACT

To quantify and visualize both bone formation and resorption within osteochondral explants cultured ex vivo is challenging with the current analysis techniques. An approach that enables monitoring of bone remodeling dynamics is longitudinal microcomputed tomography (µCT), a non-destructive technique that relies on repeated µCT scanning and subsequent registration of consecutive scans. In this study, a two-compartment culture system suitable for osteochondral explants that allowed for µCT scanning during ex vivo culture was established. Explants were scanned repeatedly in a fixed orientation, which allowed assessment of bone remodeling due to adequate image registration. Using this method, bone formation was found to be restricted to the outer surfaces when cultured statically. To demonstrate that the culture system could capture differences in bone remodeling, explants were cultured statically and under dynamic compression as loading promotes osteogenesis. No quantitative differences between static and dynamic culture were revealed. Still, only in dynamic conditions, bone formation was visualized on trabecular surfaces located within the inner cores, suggesting enhanced bone formation towards the center of the explants upon mechanical loading. Taken together, the ex vivo culture system in combination with longitudinal µCT scanning and subsequent registration of images demonstrated potential for evaluating bone remodeling within explants.

2.
Chimia (Aarau) ; 78(6): 379-383, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38946409

ABSTRACT

Sustainability has become indispensable - and so has the role chemistry plays in reaching the Sustainable Development Goals (SDGs). The Swiss Academy of Sciences (SCNAT) and its Platform Chemistry (PFC) can be a partner of the Swiss chemistry community in reaching (some of) these goals through their umbrella network. Next to all existing initiatives, SCNAT PFC recommends the chemistry community to support increasing scientific literacy such that for example students who want to contribute to a better environment in their future career become aware of the impact that chemistry has on sustainability and every day lives. The SDGs are a formalism that can be used to help communicating the impact of chemistry. It is important to keep on advertising also fundamental research, as this is the essential basis for any sustainable development.

4.
Br J Haematol ; 204(2): 638-643, 2024 02.
Article in English | MEDLINE | ID: mdl-37571963

ABSTRACT

Immune thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening haematological condition. Initial treatment involves plasma exchange (PLEX), corticosteroids, caplacizumab and rituximab. In relapsed and refractory cases despite initial treatments, further immune-modulating therapy includes the proteasome inhibitor, bortezomib. Evidence for bortezomib in this setting is limited to case reports and case series. We report our experience and perform a systematic review of the literature. We identified 21 publications with 28 unique patients in addition to our cohort of eight patients treated with bortezomib. The median age of patients was 44 years (IQR: 27-53) and 69% female. They were usually in an initial, refractory presentation of iTTP where they had received PLEX, corticosteroids, rituximab and another line of therapy. After bortezomib administration, 72% of patients had a complete response, with 85% maintaining a durable response without relapse at the last follow-up.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Purpura, Thrombotic Thrombocytopenic , Humans , Female , Adult , Middle Aged , Male , Bortezomib , Rituximab , Retrospective Studies , Purpura, Thrombocytopenic, Idiopathic/therapy , Adrenal Cortex Hormones , Plasma Exchange , ADAMTS13 Protein
5.
Adv Healthc Mater ; 12(27): e2301205, 2023 10.
Article in English | MEDLINE | ID: mdl-37405830

ABSTRACT

Human in vitro bone remodeling models, using osteoclast-osteoblast cocultures, can facilitate the investigation of human bone remodeling while reducing the need for animal experiments. Although current in vitro osteoclast-osteoblast cocultures have improved the understanding of bone remodeling, it is still unknown which culture conditions support both cell types. Therefore, in vitro bone remodeling models can benefit from a thorough evaluation of the impact of culture variables on bone turnover outcomes, with the aim to reach balanced osteoclast and osteoblast activity, mimicking healthy bone remodeling. Using a resolution III fractional factorial design, the main effects of commonly used culture variables on bone turnover markers in an in vitro human bone remodeling model are identified. This model is able to capture physiological quantitative resorption-formation coupling along all conditions. Culture conditions of two runs show promising results: conditions of one run can be used as a high bone turnover system and conditions of another run as a self-regulating system as the addition of osteoclastic and osteogenic differentiation factors is not required for remodeling. The results generated with this in vitro model allow for better translation between in vitro studies and in vivo studies, toward improved preclinical bone remodeling drug development.


Subject(s)
Bone Remodeling , Osteogenesis , Animals , Humans , Bone Remodeling/physiology , Osteoclasts/metabolism , Osteoblasts , Coculture Techniques , Cell Differentiation
6.
Biotechnol Bioeng ; 120(7): 2013-2026, 2023 07.
Article in English | MEDLINE | ID: mdl-37148472

ABSTRACT

The transition in the field of bone tissue engineering from bone regeneration to in vitro models has come with the challenge of recreating a dense and anisotropic bone-like extracellular matrix (ECM). Although the mechanism by which bone ECM gains its structure is not fully understood, mechanical loading and curvature have been identified as potential contributors. Here, guided by computational simulations, we evaluated cell and bone-like tissue growth and organization in a concave channel with and without directional fluid flow stimulation. Human mesenchymal stromal cells were seeded on donut-shaped silk fibroin scaffolds and osteogenically stimulated for 42 days statically or in a flow perfusion bioreactor. After 14, 28, and 42 days, constructs were investigated for cell and tissue growth and organization. As a result, directional fluid flow was able to improve organic tissue growth but not organization. Cells tended to orient in the tangential direction of the channel, possibly attributed to its curvature. Based on our results, we suggest that organic ECM production but not anisotropy can be stimulated through the application of fluid flow. With this study, an initial attempt in three-dimensions was made to improve the resemblance of in vitro produced bone-like ECM to the physiological bone ECM.


Subject(s)
Bone and Bones , Mesenchymal Stem Cells , Humans , Tissue Engineering/methods , Osteogenesis , Bone Regeneration , Tissue Scaffolds , Cells, Cultured , Cell Differentiation
7.
J Biomed Mater Res A ; 111(9): 1423-1440, 2023 09.
Article in English | MEDLINE | ID: mdl-37021718

ABSTRACT

In tissue engineering, cells are grown often on scaffolds and subjected to chemical/mechanical stimuli. Most such cultures still use fetal bovine serum (FBS) despite its known disadvantages including ethical concerns, safety issues, and variability in composition, which greatly influences the experimental outcomes. To overcome the disadvantages of using FBS, chemically defined serum substitute medium needs to be developed. Development of such medium depends on cell type and application-which makes it impossible to define one universal serum substitute medium for all cells in any application. Here, we developed a serum substitute medium for bone tissue engineering (BTE) in a step-by-step process. Essential components were added to the medium while human bone marrow mesenchymal stromal cells (hBMSCs, osteoblast progenitor cells) were cultured in two-dimensional and three-dimensional substrates. In a 3-week culture, the developed serum substitute medium worked equally well as FBS containing medium in term of cell attachment to the substrate, cell survival, osteoblast differentiation, and deposition of extracellular matrix. In the next step, the use of serum substitute medium was evaluated when culturing cells under mechanical loading in the form of shear stress. The outcomes showed that the application of shear stress is essential to improve extracellular matrix formation while using serum substitute medium. The developed serum substitute medium could pave the way in replacing FBS for BTE studies eliminating the use of controversial FBS and providing a better-defined chemical environment for BTE studies.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Humans , Tissue Engineering/methods , Cell Proliferation , Serum/chemistry , Serum/metabolism , Bone and Bones , Cell Differentiation , Cells, Cultured
8.
Bone Rep ; 18: 101651, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36588781

ABSTRACT

The bone resorbing osteoclasts are a complex type of cell essential for in vivo bone remodeling. There is no consensus on medium composition and seeding density for in vitro osteoclastogenesis, despite the importance thereof on osteoclastic differentiation and activity. The aim of this study was to investigate the relative effect of monocyte or peripheral blood mononuclear cell (PBMC) seeding density, osteoclastic supplement concentration and priming on the in vitro generation of functional osteoclasts, and to explore and evaluate the usefulness of commonly used markers for osteoclast cultures. Morphology and osteoclast formation were analyzed with fluorescence imaging for tartrate resistant acid phosphatase (TRAP) and integrin ß3 (Iß3). TRAP release was analyzed from supernatant samples, and resorption was analyzed from culture on Corning® Osteo Assay plates. In this study, we have shown that common non-standardized culturing conditions of monocyte or PBMCs had a significant effect on the in vitro generation of functional osteoclasts. We showed how increased osteoclastic supplement concentrations supported osteoclastic differentiation and resorption but not TRAP release, while priming resulted in increased TRAP release as well. Increased monocyte seeding densities resulted in more and large TRAP positive bi-nuclear cells, but not directly in more multinucleated osteoclasts, resorption or TRAP release. Increasing PBMC seeding densities resulted in more and larger osteoclasts and more resorption, although resorption was disproportionally low compared to the monocyte seeding density experiment. Exploration of commonly used markers for osteoclast cultures demonstrated that Iß3 staining was an excellent and specific osteoclast marker in addition to TRAP staining, while supernatant TRAP measurements could not accurately predict osteoclastic resorptive activity. With improved understanding of the effect of seeding density and osteoclastic supplement concentration on osteoclasts, experiments yielding higher numbers of functional osteoclasts can ultimately improve our knowledge of osteoclasts, osteoclastogenesis, bone remodeling and bone diseases.

9.
Bone ; 166: 116597, 2023 01.
Article in English | MEDLINE | ID: mdl-36280106

ABSTRACT

Advanced in vitro human bone defect models can contribute to the evaluation of materials for in situ bone regeneration, addressing both translational and ethical concerns regarding animal models. In this study, we attempted to develop such a model to study material-driven regeneration, using a tissue engineering approach. By co-culturing human umbilical vein endothelial cells (HUVECs) with human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds with in vitro critically sized defects, the growth of vascular-like networks and three-dimensional bone-like tissue was facilitated. After a model build-up phase of 28 days, materials were artificially implanted and HUVEC and hBMSC migration, cell-material interactions, and osteoinduction were evaluated 14 days after implantation. The materials physiologically relevant for bone regeneration included a platelet gel as blood clot mimic, cartilage spheres as soft callus mimics, and a fibrin gel as control. Although the in vitro model was limited in the evaluation of immune responses, hallmarks of physiological bone regeneration were observed in vitro. These included the endothelial cell chemotaxis induced by the blood clot mimic and the mineralization of the soft callus mimic. Therefore, the present in vitro model could contribute to an improved pre-clinical evaluation of biomaterials while reducing the need for animal experiments.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Animals , Humans , Bone Regeneration/physiology , Coculture Techniques , Human Umbilical Vein Endothelial Cells , Tissue Scaffolds , Osteogenesis
10.
J Biomed Mater Res B Appl Biomater ; 111(2): 442-452, 2023 02.
Article in English | MEDLINE | ID: mdl-36111647

ABSTRACT

A novel biomimetic artificial intervertebral disc (bioAID) for the cervical spine was developed, containing a hydrogel core representing the nucleus pulposus, an UHMWPE fiber jacket as annulus fibrosis, and titanium endplates with pins for mechanical fixation. Osseointegration of the UHMWPE fibers to adjacent bone structures is required to achieve proper biomimetic behavior and to provide long-term stability. Therefore, the aim of this study was to assess the osteoconductivity of several surface modifications of UHMWPE fabrics, 2D weft-knitted, using non-treated UHMWPE fibers (N), plasma treated UHMWPE fibers (PT), 10% hydroxy apatite (HA) loaded UHMWPE fibers (10%HA), plasma treated 10%HA UHMWPE fibers (PT-10%HA), 15%HA loaded UHMWPE fibers (15%HA) and plasma treated 15%HA UHMWPE fibers (PT-15%HA). Scanning electron microscopy (SEM) was used for surface characterization. Biological effects were assessed by evaluating initial cell attachment (SEM, DNA content), metabolic activity (PrestoBlue assay), proliferation, differentiation (alkaline phosphatase activity) and mineralization (energy dispersive x-ray, EDX analysis) using human bone marrow stromal cells. Plasma treated samples showed increased initial cell attachment, indicating the importance of hydrophilicity for cell attachment. However, incorporation only of HA or plasma treatment alone was not sufficient to result in upregulated alkaline phosphatase activity (ALP) activity. Combining HA loaded fibers with plasma treatment showed a combined effect, leading to increased cell attachment and upregulated ALP activity. Based on these results, combination of HA loaded UHMWPE fibers and plasma treatment provided the most promising fabric surface for facilitating bone ingrowth.


Subject(s)
Alkaline Phosphatase , Polyethylene , Humans , Polyethylenes/chemistry , Apatites , Prostheses and Implants
11.
Bone Rep ; 18: 101646, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36578830

ABSTRACT

The aim of the present study was to further improve an in vitro 3D osteoblast (OB) - osteoclast (OC) co-culture model of bone by tuning it towards states of formation, resorption, and equilibrium for their future applications in fundamental research, drug development and personalized medicine. This was achieved by varying culture medium composition and monocyte seeding density, the two external parameters that affect cell behavior the most. Monocytes were seeded at two seeding densities onto 3D silk-fibroin constructs pre-mineralized by MSC-derived OBs and were co-cultured in one of three different media (OC stimulating, Neutral and OB stimulating medium) for three weeks. Histology showed mineralized matrix after co-culture and OC markers in the OC medium group. Scanning Electron Microscopy showed large OC-like cells in the OC medium group. Micro-computed tomography showed increased formation in the OB medium group, equilibrium in the Neutral medium group and resorption in the OC medium group. Culture supernatant samples showed high early tartrate resistant acid phosphatase (TRAP) release in the OC medium group, a later and lower release in the Neutral medium group, and almost no release in the OB medium group. Increased monocyte seeding density showed a less-than-proportional increase in TRAP release and resorption in OC medium, while it proportionally increased TRAP release in Neutral medium without affecting net resorption. The 3D OB-OC co-culture model was effectively used to show an excess of mineral deposition using OB medium, resorption using OC medium, or an equilibrium using Neutral medium. All three media applied to the model may have their own distinct applications in fundamental research, drug development, and personalized medicine.

12.
Biotechnol Bioeng ; 120(4): 1120-1132, 2023 04.
Article in English | MEDLINE | ID: mdl-36539392

ABSTRACT

Culture medium exchange leads to loss of valuable auto- and paracrine factors produced by the cells. However, frequent renewal of culture medium is necessary for nutrient supply and to prevent waste product accumulation. Thus it remains the gold standard in cell culture applications. The use of dialysis as a medium refreshment method could provide a solution as low molecular weight molecules such as nutrients and waste products could easily be exchanged, while high molecular weight components such as growth factors, used in cell interactions, could be maintained in the cell culture compartment. This study investigates a dialysis culture approach for an in vitro bone remodeling model. In this model, both the differentiation of human mesenchymal stromal cells (MSCs) into osteoblasts and monocytes (MCs) into osteoclasts is studied. A custom-made simple dialysis culture system with a commercially available cellulose dialysis insert was developed. The data reported here revealed increased osteoblastic and osteoclastic activity in the dialysis groups compared to the standard nondialysis groups, mainly shown by significantly higher alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activity, respectively. This simple culture system has the potential to create a more efficient microenvironment allowing for cell interactions via secreted factors in mono- and cocultures and could be applied for many other tissues.


Subject(s)
Osteoclasts , Renal Dialysis , Humans , Osteoclasts/metabolism , Coculture Techniques , Osteoblasts , Tartrate-Resistant Acid Phosphatase/metabolism , Cell Culture Techniques
13.
Polymers (Basel) ; 14(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956626

ABSTRACT

Our goal was to create bioimitated scaffolding materials for biomedical purposes. The guiding idea was that we used an interpenetrating structural hierarchy of natural extracellular matrix as a "pattern" to design hydrogel scaffolds that show favorable properties for tissue regeneration. Polymeric hydrogel scaffolds are made in a simple, environmentally friendly way without additional functionalization. Gelatin and 2-hydroxyethyl methacrylate were selected to prepare interpenetrating polymeric networks and linear alginate chains were added as an interpenetrant to study their influence on the scaffold's functionalities. Cryogelation and porogenation methods were used to obtain the designed scaffolding biomaterials. The scaffold's structural, morphological, and mechanical properties, in vitro degradation, and cell viability properties were assessed to study the effects of the preparation method and alginate loading. Apatite as an inorganic agent was incorporated into cryogelated scaffolds to perform an extensive biological assay. Cryogelated scaffolds possess superior functionalities essential for tissue regeneration: fully hydrophilicity, degradability and mechanical features (2.08-9.75 MPa), and an optimal LDH activity. Furthermore, cryogelated scaffolds loaded with apatite showed good cell adhesion capacity, biocompatibility, and non-toxic behavior. All scaffolds performed equally in terms of metabolic activity and osteoconductivity. Cryogelated scaffolds with/without HAp could represent a new advance to promote osteoconductivity and enhance hard tissue repair. The obtained series of scaffolding biomaterials described here can provide a wide range of potential applications in the area of biomedical engineering.

14.
J Clin Invest ; 132(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36040802

ABSTRACT

CLN1 disease, also called infantile neuronal ceroid lipofuscinosis (NCL) or infantile Batten disease, is a fatal neurodegenerative lysosomal storage disorder resulting from mutations in the CLN1 gene encoding the soluble lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). Therapies for CLN1 disease have proven challenging because of the aggressive disease course and the need to treat widespread areas of the brain and spinal cord. Indeed, gene therapy has proven less effective for CLN1 disease than for other similar lysosomal enzyme deficiencies. We therefore tested the efficacy of enzyme replacement therapy (ERT) by administering monthly infusions of recombinant human PPT1 (rhPPT1) to PPT1-deficient mice (Cln1-/-) and CLN1R151X sheep to assess how to potentially scale up for translation. In Cln1-/- mice, intracerebrovascular (i.c.v.) rhPPT1 delivery was the most effective route of administration, resulting in therapeutically relevant CNS levels of PPT1 activity. rhPPT1-treated mice had improved motor function, reduced disease-associated pathology, and diminished neuronal loss. In CLN1R151X sheep, i.c.v. infusions resulted in widespread rhPPT1 distribution and positive treatment effects measured by quantitative structural MRI and neuropathology. This study demonstrates the feasibility and therapeutic efficacy of i.c.v. rhPPT1 ERT. These findings represent a key step toward clinical testing of ERT in children with CLN1 disease and highlight the importance of a cross-species approach to developing a successful treatment strategy.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Child , Disease Models, Animal , Enzyme Replacement Therapy , Humans , Mice , Mutation , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/genetics , Sheep
15.
Biomater Adv ; 140: 213051, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35914326

ABSTRACT

Functional calcium phosphate biomaterials can be designed as carriers of a balanced mixture of biologically relevant ions able to target critical processes in bone regeneration. They hold the potential to use mechanisms very similar to growth factors naturally produced during fracture healing, while circumventing some of their drawbacks. Here we present a novel phase of carbonated-apatite containing Mg2+, Sr2+, Zn2+ and Ga3+ ions (HApMgSrZnGa). While all dopants decrease the crystallinity, Ga3+ limits crystal growth and enables the formation of a nanosized apatite phase with enhanced specific surface area. Coexistence of the ions enhances degradability and controls solubility of low crystalline, distorted, multi-doped apatite structure, controlled by Ga3+ ions accumulated at the surface. Consequently, HApMgSrZnGa supports the viability of human mesenchymal stromal cells (MSCs) and induces their stimulation along the osteogenic lineage. In addition, the co-released ions has a synergistic antimicrobial effect, particularly within the HApMgSrZnGa-Au(arg) composite with Au(arg) as contact-based antimicrobial. The activity is stable up to two months in vitro. Osteogenic nature and antimicrobial activity, combined in a single biomaterial, are suggesting a well-balanced, multi-doped apatite design applicable as future option in bone regeneration and tissue engineering.


Subject(s)
Gallium , Strontium , Apatites , Biocompatible Materials/pharmacology , Humans , Ions , Magnesium/pharmacology , Strontium/pharmacology , Tissue Engineering , Zinc/pharmacology
16.
Front Immunol ; 13: 915277, 2022.
Article in English | MEDLINE | ID: mdl-35795685

ABSTRACT

Introduction: To study human physiological and pathological bone remodeling while addressing the principle of replacement, reduction and refinement of animal experiments (3Rs), human in vitro bone remodeling models are being developed. Despite increasing safety-, scientific-, and ethical concerns, fetal bovine serum (FBS), a nutritional medium supplement, is still routinely used in these models. To comply with the 3Rs and to improve the reproducibility of such in vitro models, xenogeneic-free medium supplements should be investigated. Human platelet lysate (hPL) might be a good alternative as it has been shown to accelerate osteogenic differentiation of mesenchymal stromal cells (MSCs) and improve subsequent mineralization. However, for a human in vitro bone model, hPL should also be able to adequately support osteoclastic differentiation and subsequent bone resorption. In addition, optimizing co-culture medium conditions in mono-cultures might lead to unequal stimulation of co-cultured cells. Methods: We compared supplementation with 10% FBS vs. 10%, 5%, and 2.5% hPL for osteoclast formation and resorption by human monocytes (MCs) in mono-culture and in co-culture with (osteogenically stimulated) human MSCs. Results and Discussion: Supplementation of hPL can lead to a less donor-dependent and more homogeneous osteoclastic differentiation of MCs when compared to supplementation with 10% FBS. In co-cultures, osteoclastic differentiation and resorption in the 10% FBS group was almost completely inhibited by MSCs, while the supplementation with hPL still allowed for resorption, mostly at low concentrations. The addition of hPL to osteogenically stimulated MSC mono- and MC-MSC co-cultures resulted in osteogenic differentiation and bone-like matrix formation, mostly at high concentrations. Conclusion: We conclude that hPL could support both osteoclastic differentiation of human MCs and osteogenic differentiation of human MSCs in mono- and in co-culture, and that this can be balanced by the hPL concentration. Thus, the use of hPL could limit the need for FBS, which is currently commonly accepted for in vitro bone remodeling models.


Subject(s)
Bone Resorption , Serum Albumin, Bovine , Animals , Blood Platelets , Cells, Cultured , Culture Media/pharmacology , Humans , Osteogenesis , Reproducibility of Results
17.
ACS Omega ; 7(15): 12724-12733, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35474849

ABSTRACT

Fetal bovine serum (FBS) is a widely used supplement in cell culture medium, despite its known variability in composition, which greatly affects cellular function and consequently the outcome of studies. In bone tissue engineering, the deposited mineralized matrix is one of the main outcome parameters, but using different brands of FBS can result in large variations. Alkaline phosphatase (ALP) is present in FBS. Not only is ALP used to judge the osteogenic differentiation of bone cells, it may affect deposition of mineralized matrix. The present study focused on the enzymatic activity of ALP in FBS of different suppliers and its contribution to mineralization in osteogenic differentiation cultures. It was hypothesized that culturing cells in a medium with high intrinsic ALP activity of FBS will lead to higher mineral deposition compared to media with lower ALP activity. The used FBS types were shown to have significant differences in enzymatic ALP activity. Our results indicate that the ALP activity of the medium not only affected the deposited mineralized matrix but also the osteogenic differentiation of cells as measured by a changed cellular ALP activity of human-bone-marrow-derived mesenchymal stromal cells (hBMSCs). In media with low inherent ALP activity, the cellular ALP activity was increased and played the major role in the mineralization process, while in media with high intrinsic ALP activity contribution from the serum, less cellular ALP activity was measured, and the ALP activity of the medium also contributed to mineral formation substantially. Our results highlight the diverse effects of ALP activity intrinsic to FBS on osteogenic differentiation and matrix mineralization and how FBS can determine the experimental outcomes, in particular for studies investigating matrix mineralization. Once again, the need to replace FBS with more controlled and known additives is highlighted.

19.
Article in English | MEDLINE | ID: mdl-34780321

ABSTRACT

Styrene-acrylonitrile-copolymer (SAN) and acrylonitrile-butadiene-styrene-copolymer (ABS) are gaining in importance as food contact materials. Oligomers and other non-intentionally added substances can migrate into foodstuffs. Five SAN and four ABS samples from the German market and manufacturers were extracted and the extractable oligomers were characterised by high performance liquid chromatography-mass spectrometry/ultraviolet detection/chemiluminescence nitrogen detection/fluorescence detection and gas chromatography-mass spectrometry. Trimers, formed from acrylonitrile and styrene units, were determined to be the dominating group of extractable oligomers in SAN and ABS in concentrations of about 4900-15800 mg/kg material. Furthermore, styrene-acrylonitrile dimers, styrene oligomers, styrene monomer and ethylbenzene were identified in the sample extracts. Migration testing with three consecutive migrations for multiple use articles was performed for two SAN articles. Migration of trimers into water, 3% acetic acid, 10% and 20% ethanol under hot-fill conditions (70°C, 2 h) was not detectable above 9 µg/dm2, while 50% ethanol acting as a food simulant for milk (124 µg/dm2 trimers during the third migration) was shown to overestimate the actual migration into milk (< 11 µg/dm2 trimers at 70°C, 2 h). 2-Amino-3-methyl-1-naphthalenecarbonitrile (AMNC), an oligomer degradation product and a primary aromatic amine, was detected in all material sample extracts (0.3-17.1 mg/kg material) and was released into food simulants in low amounts (< 0.014 µg/dm2 during the third migration into 50% ethanol at 70°C, 2 h).


Subject(s)
Acrylonitrile/isolation & purification , Butadienes/isolation & purification , Food Analysis , Food Contamination/analysis , Polymers/isolation & purification , Styrene/isolation & purification , Acrylonitrile/chemistry , Butadienes/chemistry , Polymers/chemistry , Styrene/chemistry
20.
PLoS One ; 16(11): e0257724, 2021.
Article in English | MEDLINE | ID: mdl-34735456

ABSTRACT

Drug research with animal models is expensive, time-consuming and translation to clinical trials is often poor, resulting in a desire to replace, reduce, and refine the use of animal models. One approach to replace and reduce the use of animal models is to use in vitro cell-culture models. To study bone physiology, bone diseases and drugs, many studies have been published using osteoblast-osteoclast co-cultures. The use of osteoblast-osteoclast co-cultures is usually not clearly mentioned in the title and abstract, making it difficult to identify these studies without a systematic search and thorough review. As a result, researchers are all developing their own methods, leading to conceptually similar studies with many methodological differences and, as a consequence, incomparable results. The aim of this study was to systematically review existing osteoblast-osteoclast co-culture studies published up to 6 January 2020, and to give an overview of their methods, predetermined outcome measures (formation and resorption, and ALP and TRAP quantification as surrogate markers for formation and resorption, respectively), and other useful parameters for analysis. Information regarding these outcome measures was extracted and collected in a database, and each study was further evaluated on whether both the osteoblasts and osteoclasts were analyzed using relevant outcome measures. From these studies, additional details on methods, cells and culture conditions were extracted into a second database to allow searching on more characteristics. The two databases presented in this publication provide an unprecedented amount of information on cells, culture conditions and analytical techniques for using and studying osteoblast-osteoclast co-cultures. They allow researchers to identify publications relevant to their specific needs and allow easy validation and comparison with existing literature. Finally, we provide the information and tools necessary for others to use, manipulate and expand the databases for their needs.


Subject(s)
Bone Resorption/drug therapy , Coculture Techniques , Osteoblasts/cytology , Osteoclasts/cytology , Animals , Bone Resorption/genetics , Bone Resorption/physiopathology , Cell Differentiation/drug effects , Databases, Factual , Drug Discovery/trends , Humans , Models, Animal , Osteoblasts/drug effects , Osteoclasts/drug effects , RANK Ligand/genetics
SELECTION OF CITATIONS
SEARCH DETAIL