Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37174415

ABSTRACT

Sustainability, low toxicity, and high solute potential are the fundamental reasons for focusing green chemistry on natural deep eutectic solvents (NADES). The application of NADES ranges from organic chemistry to the agricultural sector and the food industry. In the food industry, the desired food quality can be achieved by the extraction of small molecules, macromolecules, and even heavy metals. The compound yield in Maillard-type model reactions can also be increased using NADES. To extend the so-called "kitchen-type chemistry" field, an inert, food-grade NADES system based on sucrose/D-sorbitol was developed, characterized, and examined for its ability as a reaction medium by evaluating its temperature and pH stability. Reaction boundary conditions were determined at 100 °C for three hours with a pH range of 3.7-9.0. As proof of principle, two Maillard-type model reactions were implemented to generate the taste-modulating compounds N2-(1-carboxyethyl)guanosine 5'-monophosphate) (161.8 µmol/mmol) and N2-(furfuryl thiomethyl)guanosine 5'-monophosphate (95.7 µmol/g). Since the yields of both compounds are higher than their respective taste-modulating thresholds, the newly developed NADES is well-suited for these types of "kitchen-type chemistry" and, therefore, a potential solvent candidate for a wide range of applications in the food industry.

2.
Foods ; 11(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35954091

ABSTRACT

Sourdough bread is highly enjoyed for its exceptional flavor. In contrast to bread crust, which has been investigated intensively, the knowledge on bread crumb is rather fragmentary. In this study, the taste-active compounds of sourdough bread crumb were identified and quantified. By means of recombination experiments and omission tests, the authentic flavor signature of sourdough rye bread crumb was decoded and recreated with ten key tastants and eleven key odorants. Based on the final taste and aroma recombinants, a fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method using stable isotope dilution analysis (SIDA) was developed and validated. Due to prior derivatization using 3-nitrophenylhydrazine (3-NPH), key tastants and odorants in bread crumb could be quantified simultaneously in a single UHPLC run. The identified key flavor compounds in combination with the developed UHPLC-MS/MS method could offer the scientific basis for a knowledge-based optimization of the taste and odor of sourdough bread.

SELECTION OF CITATIONS
SEARCH DETAIL
...