Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nature ; 629(8011): 376-383, 2024 May.
Article in English | MEDLINE | ID: mdl-38658749

ABSTRACT

From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.


Subject(s)
Archaeology , DNA, Ancient , Family Characteristics , Grassland , Pedigree , Adult , Female , Humans , Male , Archaeology/methods , Asia/ethnology , Cemeteries/history , Consanguinity , DNA, Ancient/analysis , Europe/ethnology , Family Characteristics/ethnology , Family Characteristics/history , Genomics , History, Medieval , Politics , Adolescent , Young Adult
2.
Curr Biol ; 33(18): 3951-3961.e11, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37633281

ABSTRACT

As the collapse of the Western Roman Empire accelerated during the 4th and 5th centuries, arriving "barbarian" groups began to establish new communities in the border provinces of the declining (and eventually former) empire. This was a time of significant cultural and political change throughout not only these border regions but Europe as a whole.1,2 To better understand post-Roman community formation in one of these key frontier zones after the collapse of the Hunnic movement, we generated new paleogenomic data for a set of 38 burials from a time series of three 5th century cemeteries3,4,5 at Lake Balaton, Hungary. We utilized a comprehensive sampling approach to characterize these cemeteries along with data from 38 additional burials from a previously published mid-6th century site6 and analyzed them alongside data from over 550 penecontemporaneous individuals.7,8,9,10,11,12,13,14,15,16,17,18,19 The range of genetic diversity in all four of these local burial communities is extensive and wider ranging than penecontemporaneous Europeans sequenced to date. Despite many commonalities in burial customs and demography, we find that there were substantial differences in genetic ancestry between the sites. We detect evidence of northern European gene flow into the Lake Balaton region. Additionally, we observe a statistically significant association between dress artifacts and genetic ancestry among 5th century genetically female burials. Our analysis shows that the formation of early Medieval communities was a multifarious process even at a local level, consisting of genetically heterogeneous groups.


Subject(s)
Archaeology , Cemeteries , Humans , Female , Cemeteries/history , Culture , Base Sequence , Europe
3.
Cell ; 185(11): 1842-1859.e18, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35561686

ABSTRACT

The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.


Subject(s)
Farmers , Genome , Agriculture , DNA, Mitochondrial/genetics , Europe , Genetic Drift , Genomics , History, Ancient , Human Migration , Humans
4.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35366416

ABSTRACT

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Subject(s)
Asian People , DNA, Ancient , Genetics, Population , Asian People/genetics , Genome , History, Ancient , Human Migration/history , Humans , Sulfur
5.
Am J Biol Anthropol ; 177(3): 540-555, 2022 03.
Article in English | MEDLINE | ID: mdl-34846066

ABSTRACT

OBJECTIVES: Mode of subsistence is an important factor influencing dietary habits and the genetic structure of various populations through differential intensity of gene flow and selection pressures. Previous studies suggest that in Africa Taste 2 Receptor Member 16 (TAS2R16), which encodes the 7-transmembrane receptor protein for bitterness, might also be under positive selection pressure. METHODS: However, since sampling coverage of populations was limited, we created a new TAS2R16 population dataset from across the African Sahel/Savannah belt representing various local populations of differing subsistence modes, linguistic affiliations, and geographic provenience. We sequenced the TAS2R16 exon gene and analyzed 2250 haplotypes among 19 populations. RESULTS: We found no evidence for selection as a driving force of genetic variation at this locus; instead, we discovered a highly significant correlation between TAS2R16 genetic and geographical distances based on provenience of the sampled populations, strongly suggesting that genetic drift most likely prevailed over positive selection at this specific locus. We also found significant correlations with other independent loci, mainly in sedentary farmers. DISCUSSION: Our results do not support the notion that the genetic diversity of TAS2R16 in Sahelian populations was shaped by selective pressures. This could result from several alternative and not mutually exclusive mechanisms, of which the possibility that, due to the pleiotropic nature of TAS2R16, selective pressures on other traits could counterbalance those acting on bitter taste perception, or that the change of diet in the Neolithic generally relaxed selective pressure on this gene.


Subject(s)
Taste Buds , Taste , Humans , Taste/genetics , Africa , Genetic Structures , Demography
6.
Curr Biol ; 30(21): 4307-4315.e13, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32888485

ABSTRACT

Lactase persistence (LP), the continued expression of lactase into adulthood, is the most strongly selected single gene trait over the last 10,000 years in multiple human populations. It has been posited that the primary allele causing LP among Eurasians, rs4988235-A [1], only rose to appreciable frequencies during the Bronze and Iron Ages [2, 3], long after humans started consuming milk from domesticated animals. This rapid rise has been attributed to an influx of people from the Pontic-Caspian steppe that began around 5,000 years ago [4, 5]. We investigate the spatiotemporal spread of LP through an analysis of 14 warriors from the Tollense Bronze Age battlefield in northern Germany (∼3,200 before present, BP), the oldest large-scale conflict site north of the Alps. Genetic data indicate that these individuals represent a single unstructured Central/Northern European population. We complemented these data with genotypes of 18 individuals from the Bronze Age site Mokrin in Serbia (∼4,100 to ∼3,700 BP) and 37 individuals from Eastern Europe and the Pontic-Caspian Steppe region, predating both Bronze Age sites (∼5,980 to ∼3,980 BP). We infer low LP in all three regions, i.e., in northern Germany and South-eastern and Eastern Europe, suggesting that the surge of rs4988235 in Central and Northern Europe was unlikely caused by Steppe expansions. We estimate a selection coefficient of 0.06 and conclude that the selection was ongoing in various parts of Europe over the last 3,000 years.


Subject(s)
DNA, Ancient , Lactase/genetics , Selection, Genetic , White People/genetics , Adult , Body Remains , DNA, Mitochondrial/genetics , Europe , Female , Gene Frequency , Humans , Male , Young Adult
7.
Am J Phys Anthropol ; 173(3): 423-436, 2020 11.
Article in English | MEDLINE | ID: mdl-32812238

ABSTRACT

OBJECTIVES: Archeological evidence shows that first nomadic pastoralists came to the African Sahel from northeastern Sahara, where milking is reported by ~7.5 ka. A second wave of pastoralists arrived with the expansion of Arabic tribes in 7th-14th century CE. All Sahelian pastoralists depend on milk production but genetic diversity underlying their lactase persistence (LP) is poorly understood. MATERIALS AND METHODS: We investigated SNP variants associated with LP in 1,241 individuals from 29 mostly pastoralist populations in the Sahel. Then, we analyzed six SNPs in the neighboring fragment (419 kb) in the Fulani and Tuareg with the -13910*T mutation, reconstructed haplotypes, and calculated expansion age and growth rate of this variant. RESULTS: Our results reveal a geographic localization of two different LP variants in the Sahel: -13910*T west of Lake Chad (Fulani and Tuareg pastoralists) and -13915*G east of there (mostly Arabic-speaking pastoralists). We show that -13910*T has a more diversified haplotype background among the Fulani than among the Tuareg and that the age estimate for expansion of this variant among the Fulani (~8.5 ka) corresponds to introduction of cattle to the area. CONCLUSIONS: This is the first study showing that the "Eurasian" LP allele -13910*T is widespread both in northern Europe and in the Sahel; however, it is limited to pastoralists in the Sahel. Since the Fulani haplotype with -13910*T is shared with contemporary Eurasians, its origin could be in a region encompassing the Near East and northeastern Africa in a population ancestral to both Saharan pastoralists and European farmers.


Subject(s)
Black People , Ethnicity , Lactase/genetics , Polymorphism, Single Nucleotide/genetics , Africa, Northern , Animals , Anthropology, Physical , Arabs/genetics , Arabs/statistics & numerical data , Black People/genetics , Black People/statistics & numerical data , Diet , Ethnicity/genetics , Ethnicity/statistics & numerical data , Haplotypes , Humans , Milk , Transients and Migrants , White People/genetics , White People/statistics & numerical data
8.
Am J Phys Anthropol ; 171(3): 496-508, 2020 03.
Article in English | MEDLINE | ID: mdl-31930493

ABSTRACT

OBJECTIVES: The Sahel belt is occupied by populations who use two types of subsistence strategy, nomadic pastoralism and sedentary farming, and who belong to three linguistic families, Niger-Congo, Nilo-Saharan, and Afro-Asiatic. Little is known, however, about the origins of these two populations and their mutual genetic relationships. MATERIALS AND METHODS: We have built a large dataset of mitochondrial DNA sequences and Y chromosomal STR haplotypes of pastoralists and farmers belonging to all three linguistic phyla in the western, central, and eastern parts of the Sahel. We calculated pairwise genetic, geographic, and linguistic distances between populations and analyzed the effects of geography, language, and subsistence on population genetic structure. RESULTS: We found that subsistence mode significantly contributed to the generally low population structure in the Sahel and that language affiliation plays a more important role for pastoralists than for farmers. We also demonstrated that geographic isolation significantly influenced the population structure of sedentary farmers but not of nomadic pastoralists. Finally, we found haplotypes shared between the Fulani and Arabic-speaking Baggara, supporting the theory of Baggarization, which explains the recent adaptation of Arabic-speaking nomads in the Sahel region through contact with autochthonous sub-Saharan populations. CONCLUSIONS: Based on various genetic and archaeological evidence pertaining to the Sahel, we suggest that the idea of a bidirectional Sahelian corridor is valid, but that pastoralists made a more important contribution to its population structure. It is also possible that agropastoralists diverged into farmers and pastoralists in the early stages of formation of the Sahelian gene pool.


Subject(s)
Chromosomes, Human, Y , DNA, Mitochondrial/analysis , Genetic Variation , Life Style , Microsatellite Repeats , Africa, Central , Africa, Eastern , Africa, Western , Agriculture/classification , Cultural Evolution , Human Migration , Humans , Life Style/ethnology , Male
9.
Proc Natl Acad Sci U S A ; 115(13): 3494-3499, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531040

ABSTRACT

Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago.


Subject(s)
Genetics, Population , Genome, Human , Genomics/methods , Human Migration , Skull/metabolism , White People/genetics , Archaeology , DNA, Ancient , Female , Genetic Variation , Germany , Haplotypes , History, Medieval , Humans , Phenotype , Skull/anatomy & histology , Whole Genome Sequencing
10.
Ann Hum Biol ; 44(6): 537-545, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28502204

ABSTRACT

BACKGROUND: The origin of Western African pastoralism, represented today by the Fulani nomads, has been a highly debated issue for the past decades, and has not yet been conclusively resolved. AIM: This study focused on Alu polymorphisms in sedentary and nomadic populations across the African Sahel to investigate patterns of diversity that can complement the existing results and contribute to resolving issues concerning the origin of West African pastoralism. SUBJECTS AND METHODS: A new dataset of 21 Alu biallelic markers covering a substantial part of the African Sahel has been analysed jointly with several published North African populations. RESULTS: Interestingly, with regard to Alu variation, the relationship of Fulani pastoralists to North Africans is not as evident as was earlier revealed by studies of uniparental loci such as mtDNA and NRY. Alu insertions point rather to an affinity of Fulani pastoralists to Eastern Africans also leading a pastoral lifestyle. CONCLUSIONS: It is suggested that contemporary Fulani pastoralists might be descendants of an ancestral Eastern African population that, while crossing the Sahara in the Holocene, admixed slightly with a population of Eurasian (as evidenced by uniparental polymorphisms) ancestry. It seems that, in the Fulani pastoralists, Alu elements reflect more ancient genetic relationships than do uniparental genetic systems.


Subject(s)
Alu Elements/genetics , Polymorphism, Genetic/genetics , Transients and Migrants , Africa South of the Sahara , Humans
11.
Nat Commun ; 8: 14615, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256537

ABSTRACT

During the 1st millennium before the Common Era (BCE), nomadic tribes associated with the Iron Age Scythian culture spread over the Eurasian Steppe, covering a territory of more than 3,500 km in breadth. To understand the demographic processes behind the spread of the Scythian culture, we analysed genomic data from eight individuals and a mitochondrial dataset of 96 individuals originating in eastern and western parts of the Eurasian Steppe. Genomic inference reveals that Scythians in the east and the west of the steppe zone can best be described as a mixture of Yamnaya-related ancestry and an East Asian component. Demographic modelling suggests independent origins for eastern and western groups with ongoing gene-flow between them, plausibly explaining the striking uniformity of their material culture. We also find evidence that significant gene-flow from east to west Eurasia must have occurred early during the Iron Age.


Subject(s)
Asian People/genetics , Gene Flow , Human Migration/history , Models, Statistical , White People/genetics , DNA, Mitochondrial/genetics , Datasets as Topic , Genetic Variation/genetics , Grassland , History, Ancient , Humans , Kazakhstan , Male , Russia , Transients and Migrants/history
12.
Science ; 353(6298): 499-503, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27417496

ABSTRACT

We sequenced Early Neolithic genomes from the Zagros region of Iran (eastern Fertile Crescent), where some of the earliest evidence for farming is found, and identify a previously uncharacterized population that is neither ancestral to the first European farmers nor has contributed substantially to the ancestry of modern Europeans. These people are estimated to have separated from Early Neolithic farmers in Anatolia some 46,000 to 77,000 years ago and show affinities to modern-day Pakistani and Afghan populations, but particularly to Iranian Zoroastrians. We conclude that multiple, genetically differentiated hunter-gatherer populations adopted farming in southwestern Asia, that components of pre-Neolithic population structure were preserved as farming spread into neighboring regions, and that the Zagros region was the cradle of eastward expansion.


Subject(s)
Agriculture , Genome, Human , Afghanistan/ethnology , Agriculture/history , Ethnicity/genetics , Genetic Variation , History, Ancient , Human Migration , Humans , Iran/ethnology , Pakistan/ethnology , White People/genetics
13.
Proc Natl Acad Sci U S A ; 113(25): 6886-91, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274049

ABSTRACT

Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia.


Subject(s)
Agriculture , Anthropology , Europe , Genetics, Population , Humans , Mediterranean Region , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...