Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Oncol ; 42(15): 1738-1744, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38422473

ABSTRACT

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Sacituzumab govitecan (SG), a first-in-class anti-trophoblast cell surface antigen 2 (Trop-2) antibody-drug conjugate, demonstrated superior efficacy over single-agent chemotherapy (treatment of physician's choice [TPC]) in patients with metastatic triple-negative breast cancer (mTNBC) in the international, multicenter, phase III ASCENT study.Patients were randomly assigned 1:1 to receive SG or TPC until unacceptable toxicity/progression. Final efficacy secondary end point analyses and post hoc analyses of outcomes stratified by Trop-2 expression and human epidermal growth factor receptor 2 status are reported. Updated safety analyses are provided.In this final analysis, SG (n = 267) improved median progression-free survival (PFS; 4.8 v 1.7 months; hazard ratio (HR), 0.41 [95% CI, 0.33 to 0.52]) and median overall survival (OS; 11.8 v 6.9 months; HR, 0.51 [95% CI, 0.42 to 0.63]) over TPC (n = 262). SG improved PFS over TPC in each Trop-2 expression quartile (n = 168); a trend was observed for improved OS across quartiles. Overall, SG had a manageable safety profile, with ≤5% of treatment-related discontinuations because of adverse events and no treatment-related deaths. The safety profile was consistent across all subgroups.These data confirm the clinical benefit of SG over chemotherapy, reinforcing SG as an effective treatment option in patients with mTNBC in the second line or later.


Subject(s)
Antibodies, Monoclonal, Humanized , Antigens, Neoplasm , Cell Adhesion Molecules , Receptor, ErbB-2 , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Middle Aged , Adult , Receptor, ErbB-2/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Cell Adhesion Molecules/metabolism , Aged , Immunoconjugates/therapeutic use , Immunoconjugates/adverse effects , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Progression-Free Survival , Neoplasm Metastasis
2.
Mol Cancer Ther ; 23(3): 343-353, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-37913500

ABSTRACT

Solid tumor antibody-drug conjugates (ADC) have experienced more clinical success in the last 5 years than the previous 18-year span since the first ADC approval in 2000. While recent advances in protein engineering, linker design, and payload variations have played a role in this success, high expression and readily internalized targets have also been crucial to solid tumor therapy. However, these factors are also paradoxically connected to poor tissue penetration and lower efficacy. Previous work shows that potent ADCs can benefit from slower internalization under subsaturating doses to improve tissue penetration and increase tumor response. In contrast, faster internalization is predicted to increase efficacy under higher, tumor saturating doses. In this work, the intracellular delivery of SN-38 conjugated to an anti-carcinoembryonic antigen (anti-CEA) antibody (Ab) is increased by coadministering a noncompeting (cross-linking) anti-CEA Ab to improve efficacy in a colorectal carcinoma animal model. The SN-38 payload enables broad tumor saturation with clinically-tolerable doses, and under these saturating conditions, using a second CEA receptor cross-linking Ab yields faster internalization, which increases tumor killing efficacy. Our spheroid results show indirect bystander killing can also occur, but the more efficient direct cell killing from targeted intracellular payload release drives a greater tumor response. These results provide a strategy to increase therapeutic effectiveness with improved intracellular delivery under tumor saturating doses with the potential to expand the ADC target repertoire.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Animals , Carcinoembryonic Antigen , Irinotecan , Cell Line, Tumor , Antibodies, Monoclonal
3.
Mol Cancer Ther ; 22(1): 102-111, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36190986

ABSTRACT

Antibody-drug conjugates (ADC) are a rapidly growing class of targeted cancer treatments, but the field has experienced significant challenges from their complex design. This study examined the multiscale distribution of sacituzumab govitecan (SG; Trodelvy), a recently clinically approved ADC, to clarify the mechanism(s) of efficacy given its unique design strategy. We employed a multiscale quantitative pharmacokinetic approach, including near-infrared fluorescence imaging, single-cell flow cytometry measurements, payload distribution via γH2AX pharmacodynamic staining, and a novel dual-labeled fluorescent technique to track the ADC and payload in a high trophoblast cell-surface antigen 2 expression xenograft model of gastric cancer (NCI-N87). We found that rapid release of the SN-38 payload from the hydrolysable linker inside cells imparts more DNA damage in vitro and in vivo than an ADC with a more stable enzyme cleavable linker. With SG, little to no extracellular payload release in the tumor was observed using a dual-labeled fluorescence technique, although bystander effects were detected. The high dosing regimen allowed the clinical dose to reach the majority of cancer cells, which has been linked to improved efficacy. In addition, the impact of multiple doses (day 1 and day 8) of a 21-day cycle was found to further improve tissue penetration despite not changing tumor uptake [percent injected dose per gram (%ID/g)] of the ADC. These results show increased ADC efficacy with SG can be attributed to efficient tumor penetration and intracellular linker cleavage after ADC internalization. This quantitative approach to study multiscale delivery can be used to inform the design of next-generation ADCs and prodrugs for other targets.


Subject(s)
Immunoconjugates , Stomach Neoplasms , Humans , Drug Liberation , Camptothecin/pharmacology , Stomach Neoplasms/drug therapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...