Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38553008

ABSTRACT

Antibodies to SARS-CoV-2 on the mucosal surfaces of the respiratory tract are understood to contribute to protection against SARS-CoV-2 infection. We aimed to describe the prevalence, levels, and functionality of mucosal antibodies in the general Dutch population. Nasal samples were collected from 778 randomly selected participants, 1-90 years of age, nested within the nationwide prospective SARS-CoV-2 PIENTER corona serosurvey in the Netherlands. Spike-specific immunoglobulin (Ig)G was detected in the nasal samples of 94.6% (in case of the wild-type S1 variant) and 94.9% (Omicron BA.1) of the individuals, whereas 44.2% and 62.7% of the individuals were positive for wild-type and Omicron BA.1 S1 IgA, respectively. The lowest prevalence of mucosal antibodies was observed in children under 12 years of age. The prevalence and levels of IgA and IgG were higher in individuals with a history of SARS-CoV-2 infection. Mucosal antibodies inhibited the binding of Wuhan, Delta, and Omicron BA.1 receptor binding domain to human angiotensin-converting enzyme 2 in 94.4%, 95.4%, and 92.6% of the participants, respectively. Higher levels of mucosal antibodies were associated with a lower risk of future infection.

2.
JBMR Plus ; 8(2): ziad005, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38505530

ABSTRACT

Staphylococcus aureus is the most common pathogen that causes implant-associated osteomyelitis, a clinically incurable disease. Immune evasion of S. aureus relies on various mechanisms to survive within the bone niche, including the secretion of leukotoxins such as Panton-Valentine leukocidin (PVL). PVL is a pore-forming toxin exhibiting selective human tropism for C5a receptors (C5aR1 and C5aR2) and CD45 on neutrophils, monocytes, and macrophages. PVL is an important virulence determinant in lung, skin and soft tissue infections. The involvement of PVL in S. aureus pathogenesis during bone infections has not been studied extensively yet. To investigate this, humanized BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (huBRGSF) mice were subjected to transtibial implant-associated osteomyelitis with community-acquired methicillin-resistant S. aureus (CA-MRSA) USA300 wild type strain (WT), an isogenic mutant lacking lukF/S-PV (Δpvl), or complemented mutant (Δpvl+pvl). Three days post-surgery, Δpvl-infected huBRGSF mice had a less severe infection compared to WT-infected animals as characterized by 1) improved clinical outcomes, 2) lower ex vivo bacterial bone burden, 3) absence of staphylococcal abscess communities (SACs) in their bone marrow, and 4) compromised MRSA dissemination to internal organs (liver, kidney, spleen, heart). Interestingly, Δpvl-infected huBRGSF mice had fewer human myeloid cells, neutrophils, and HLA-DR+ monocytes in the bone niche compared to WT-infected animals. Expectedly, a smaller fraction of human myeloid cells were apoptotic in the Δpvl-infected huBRGSF animals. Taken together, our study highlights the pivotal role of PVL during acute implant-associated osteomyelitis in humanized mice.

3.
Sci Rep ; 13(1): 10912, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407603

ABSTRACT

Cytomegalovirus (CMV) is known to alter circulating effector memory or re-expressing CD45RA+ (TemRA) T-cell numbers, but whether Epstein-Barr virus (EBV) does the same or this is amplified during a CMV and EBV co-infection is unclear. Immune cell numbers in blood of children and young, middle-aged, and senior adults (n = 336) were determined with flow cytometry, and additional multivariate linear regression, intra-group correlation, and cluster analyses were performed. Compared to non-infected controls, CMV-seropositive individuals from all age groups had more immune cell variance, and CMV+ EBV- senior adults had more late-differentiated CD4+ and CD8+ TemRA and CD4+ effector memory T-cells. EBV-seropositive children and young adults had a more equal immune cell composition than non-infected controls, and CMV- EBV+ senior adults had more intermediate/late-differentiated CD4+ TemRA and effector memory T-cells than non-infected controls. CMV and EBV co-infected young and middle-aged adults with an elevated BMI and anti-CMV antibody levels had a similar immune cell composition as senior adults, and CMV+ EBV+ middle-aged adults had more late-differentiated CD8+ TemRA, effector memory, and HLA-DR+ CD38- T-cells than CMV+ EBV- controls. This study identified changes in T-cell numbers in CMV- or EBV-seropositive individuals and that some CMV and EBV co-infected young and middle-aged adults had an aging-related T-cell phenotype.


Subject(s)
Cytomegalovirus , Epstein-Barr Virus Infections , Humans , Herpesvirus 4, Human , Phenotype
4.
Nat Rev Dis Primers ; 8(1): 67, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266296

ABSTRACT

Musculoskeletal trauma leading to broken and damaged bones and soft tissues can be a life-threating event. Modern orthopaedic trauma surgery, combined with innovation in medical devices, allows many severe injuries to be rapidly repaired and to eventually heal. Unfortunately, one of the persisting complications is fracture-related infection (FRI). In these cases, pathogenic bacteria enter the wound and divert the host responses from a bone-healing course to an inflammatory and antibacterial course that can prevent the bone from healing. FRI can lead to permanent disability, or long courses of therapy lasting from months to years. In the past 5 years, international consensus on a definition of these infections has focused greater attention on FRI, and new guidelines are available for prevention, diagnosis and treatment. Further improvements in understanding the role of perioperative antibiotic prophylaxis and the optimal treatment approach would be transformative for the field. Basic science and engineering innovations will be required to reduce infection rates, with interventions such as more efficient delivery of antibiotics, new antimicrobials, and optimizing host defences among the most likely to improve the care of patients with FRI.


Subject(s)
Fractures, Bone , Surgical Wound Infection , Humans , Surgical Wound Infection/drug therapy , Surgical Wound Infection/microbiology , Surgical Wound Infection/prevention & control , Fractures, Bone/complications , Anti-Bacterial Agents/therapeutic use , Consensus
5.
Front Cell Infect Microbiol ; 12: 910970, 2022.
Article in English | MEDLINE | ID: mdl-35811672

ABSTRACT

S. aureus infection of bone is difficult to eradicate due to its ability to colonize the osteocyte-lacuno-canalicular network (OLCN), rendering it resistant to standard-of-care (SOC) antibiotics. To overcome this, we proposed two bone-targeted bisphosphonate-conjugated antibiotics (BCA): bisphosphonate-conjugated sitafloxacin (BCS) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS). Initial studies demonstrated that the BCA kills S. aureus in vitro. Here we demonstrate the in vivo efficacy of BCS and HBCS versus bisphosphonate, sitafloxacin, and vancomycin in mice with implant-associated osteomyelitis. Longitudinal bioluminescent imaging (BLI) confirmed the hypothesized "target and release"-type kinetics of BCS and HBCS. Micro-CT of the infected tibiae demonstrated that HBCS significantly inhibited peri-implant osteolysis versus placebo and free sitafloxacin (p < 0.05), which was not seen with the corresponding non-antibiotic-conjugated bisphosphonate control. TRAP-stained histology confirmed that HBCS significantly reduced peri-implant osteoclast numbers versus placebo and free sitafloxacin controls (p < 0.05). To confirm S. aureus killing, we compared the morphology of S. aureus autolysis within in vitro biofilm and infected tibiae via transmission electron microscopy (TEM). Live bacteria in vitro and in vivo presented as dense cocci ~1 µm in diameter. In vitro evidence of autolysis presented remnant cell walls of dead bacteria or "ghosts" and degenerating (non-dense) bacteria. These features of autolyzed bacteria were also present among the colonizing S. aureus within OLCN of infected tibiae from placebo-, vancomycin-, and sitafloxacin-treated mice, similar to placebo. However, most of the bacteria within OLCN of infected tibiae from BCA-treated mice were less dense and contained small vacuoles and holes >100 nm. Histomorphometry of the bacteria within the OLCN demonstrated that BCA significantly increased their diameter versus placebo and free antibiotic controls (p < 0.05). As these abnormal features are consistent with antibiotic-induced vacuolization, bacterial swelling, and necrotic phenotype, we interpret these findings to be the initial evidence of BCA-induced killing of S. aureus within the OLCN of infected bone. Collectively, these results support the bone targeting strategy of BCA to overcome the biodistribution limits of SOC antibiotics and warrant future studies to confirm the novel TEM phenotypes of bacteria within OLCN of S. aureus-infected bone of animals treated with BCS and HBCS.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Osteomyelitis , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Disease Models, Animal , Fluoroquinolones , Mice , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus , Tissue Distribution , Vancomycin/pharmacology
6.
Pathogens ; 10(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34832602

ABSTRACT

Staphylococcus aureus is the main causative pathogen of subcutaneous, bone, and implant-related infections, forming structures known as staphylococcal abscess communities (SACs) within tissues that also contain immunosuppressive myeloid-derived suppressor cells (MDSCs). Although both SACs and MDSCs are present in chronic S. aureus infections, it remains unknown whether SACs directly trigger MDSC expansion. To investigate this, a previously developed 3D in vitro SAC model was co-cultured with murine and human bone marrow cells. Subsequently, it was shown that SAC-exposed human CD11blow/- myeloid cells or SAC-exposed murine CD11b+ Gr-1+ cells were immunosuppressive mainly by reducing absolute CD4+ and CD8α+ T cell numbers, as shown in T cell proliferation assays and with flow cytometry. Monocytic MDSCs from mice with an S. aureus bone infection also strongly reduced CD4+ and CD8α+ T cell numbers. Using protein biomarker analysis and an immunoassay, we detected in SAC-bone marrow co-cultures high levels of GM-CSF, IL-6, VEGF, IL-1ß, TNFα, IL-10, and TGF-ß. Furthermore, SAC-exposed neutrophils expressed Arg-1 and SAC-exposed monocytes expressed Arg-1 and iNOS, as shown via immunofluorescent stains. Overall, this study showed that SACs cause MDSC expansion from bone marrow cells and identified possible mediators to target as an additional strategy for treating chronic S. aureus infections.

7.
Antibiotics (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34680767

ABSTRACT

Orthopaedic device-related infection (ODRI) presents a significant challenge to the field of orthopaedic and trauma surgery. Despite extensive treatment involving surgical debridement and prolonged antibiotic therapy, outcomes remain poor. This is largely due to the unique abilities of Staphylococcus aureus, the most common causative agent of ODRI, to establish and protect itself within the host by forming biofilms on implanted devices and staphylococcal abscess communities (SACs). There is a need for novel antimicrobials that can readily target such features. Enzybiotics are a class of antimicrobial enzymes derived from bacteria and bacteriophages, which function by enzymatically degrading bacterial polymers essential to bacterial survival or biofilm formation. Here, we apply an enzybiotic-based combination regimen to a set of in vitro models as well as in a murine ODRI model to evaluate their usefulness in eradicating established S. aureus infection, compared to classical antibiotics. We show that two chimeric endolysins previously selected for their functional efficacy in human serum in combination with a polysaccharide depolymerase reduce bacterial CFU numbers 10,000-fold in a peg model and in an implant model of biofilm. The enzyme combination also completely eradicates S. aureus in a SAC in vitro model where classical antibiotics are ineffective. In an in vivo ODRI model in mice, the antibiofilm effects of this enzyme regimen are further enhanced when combined with a classical gentamicin/vancomycin treatment. In a mouse model of methicillin-resistant S. aureus (MRSA) ODRI following a fracture repair, a combined local enzybiotic/antibiotic treatment regimen showed a significant CFU reduction in the device and the surrounding soft tissue, as well as significant prevention of weight loss. These outcomes were superior to treatment with antibiotics alone. Overall, this study demonstrates that the addition of enzybiotics, which are distinguished by their extremely rapid killing efficacy and antibiofilm activities, can enhance the treatment of severe MRSA ODRI.

8.
Infect Immun ; 88(11)2020 10 19.
Article in English | MEDLINE | ID: mdl-32817328

ABSTRACT

Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.


Subject(s)
Abscess/immunology , Abscess/microbiology , Drug Resistance, Microbial/physiology , Staphylococcal Infections/immunology , Humans , In Vitro Techniques , Neutrophils/immunology , Staphylococcus aureus/physiology
9.
Am J Pathol ; 190(6): 1151-1163, 2020 06.
Article in English | MEDLINE | ID: mdl-32194053

ABSTRACT

Osteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis. Advanced in vitro cell culture models, such as ex vivo culture models or organoids, have also been developed over the past decade, and have become widespread in many fields, including infectious diseases. These models better mimic the in vivo environment, allow the use of human cells, and can reduce our reliance on animals in osteomyelitis research. In this review, we provide an overview of the main pathologic concepts in osteomyelitis, with a focus on the new discoveries in recent years. Furthermore, we outline the value of modern in vitro cell culture techniques, with a focus on their current application to infectious diseases and osteomyelitis in particular.


Subject(s)
Osteomyelitis/immunology , Osteomyelitis/pathology , Staphylococcal Infections/pathology , Animals , Disease Models, Animal , Humans , Osteocytes/pathology , Research Design , Staphylococcal Infections/immunology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...