Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619286

ABSTRACT

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Subject(s)
Antigens, CD , Cytokines , Iron , Lymphocyte Activation , Mucosal-Associated Invariant T Cells , Receptors, Transferrin , Humans , Mucosal-Associated Invariant T Cells/immunology , Iron/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Lymphocyte Activation/immunology , Cytokines/metabolism , Cell Proliferation , Cells, Cultured , Adenosine Triphosphate/metabolism
2.
Int J Obes (Lond) ; 48(7): 1036-1038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467728

ABSTRACT

Although the orchestrating role of Interleukin-36 cytokines in regulating inflammation at barrier tissue sites, is well established, whether they play a significant role in the settings of metabolic health and disease, has yet to be fully established. Several recent studies have demonstrated that IL-36 cytokine expression is elevated among adult patients with obesity, and can play roles in regulating both insulin sensitivity and driving inflammation. In this report, we have extended these analyses to paediatric patients and identified an association between elevated serum levels of expression of the specific Interleukin-36 subfamily member, IL-36ß, among children with obesity displaying insulin sensitivity, compared to children with obesity who are insulin resistant. While these data further indicate a possible protective role for IL-36 in metabolic health, they also differ with previous findings from an adult patient cohort, where elevated levels of the related cytokine, IL-36γ, were found to occur in association with improved metabolic health. While highlighting important differences between paediatric and adult patient cohorts in the context of metabolic disease associated with obesity, these data underscore the need for a deeper mechanistic analysis of the role of IL-36 cytokines in disease.


Subject(s)
Insulin Resistance , Interleukin-1 , Pediatric Obesity , Humans , Insulin Resistance/physiology , Child , Male , Female , Interleukin-1/blood , Pediatric Obesity/blood , Pediatric Obesity/complications , Adolescent , Inflammation/blood
SELECTION OF CITATIONS
SEARCH DETAIL