Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 101(3): 1163-1174, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27726023

ABSTRACT

Steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S is a molybdenum oxidoreductase belonging to the so-called ethylbenzene dehydrogenase (EBDH)-like subclass of DMSO reductases capable of the regioselective hydroxylation of cholesterol or cholecalciferol to 25-hydroxy products. Both products are important biologically active molecules: 25-hydroxycholesterol is responsible for a complex regulatory function in the immunological system, while 25-hydroxycholecalciferol (calcifediol) is the activated form of vitamin D3 used in the treatment of rickets and other calcium disorders. Studies revealed that the optimal enzymatic synthesis proceeds in fed-batch reactors under anaerobic conditions, with 6-9 % (w/v) 2-hydroxypropyl-ß-cyclodextrin as a solubilizer and 1.25-5 % (v/v) 2-methoxyethanol as an organic co-solvent, both adjusted to the substrate type, and 8-15 mM K3[Fe(CN)6] as an electron acceptor. Such thorough optimization of the reaction conditions resulted in high product concentrations: 0.8 g/L for 25-hydroxycholesterol, 1.4 g/L for calcifediol and 2.2 g/L for 25-hydroxy-3-ketosterols. Although the purification protocol yields approximately 2.3 mg of pure S25DH from 30 g of wet cell mass (specific activity of 14 nmol min-1 mg-1), the non-purified crude extract or enzyme preparation can be readily used for the regioselective hydroxylation of both cholesterol and cholecalciferol. On the other hand, pure S25DH can be efficiently immobilized either on powder or a monolithic silica support functionalized with an organic linker providing NH2 groups for enzyme covalent binding. Although such immobilization reduced the enzyme initial activity more than twofold it extended S25DH catalytic lifetime under working conditions at least 3.5 times.


Subject(s)
Cholecalciferol/metabolism , Cholesterol/metabolism , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Sterols/metabolism , Betaproteobacteria/enzymology , Biocatalysis , Bioreactors , Calcifediol/metabolism , Hydroxycholesterols/metabolism , Hydroxylation , Metabolic Engineering , Oxidoreductases/chemistry
2.
Br J Dermatol ; 166(4): 875-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22098151

ABSTRACT

BACKGROUND: Pachyonychia congenita (PC) is an autosomal dominant, very rare keratin disorder caused by mutations in any of at least four genes (KRT6A, KRT6B, KRT16 or KRT17), which can lead to hypertrophic nail dystrophy and palmoplantar keratoderma, among other manifestations. Classically, patients with mutations in KRT6A and KRT16 have been grouped to the PC-1 subtype (Jadassohn-Lewandowsky type) and KRT6B and KRT17 to PC-2 (Jackson-Lawler type). OBJECTIVES: To describe clinical heterogeneity among patients with PC who have genetic mutations in KRT6A and KRT16. METHODS: In 2004, the Pachyonychia Congenita Project established the International PC Research Registry (IPCRR) for patients with PC. All patients reporting here underwent genetic testing and responded to a standardized, validated survey about their PC symptoms. We report results from 89 patients with KRT6A mutations and 68 patients with KRT16 mutations. RESULTS: Patients with PC who have KRT6A and KRT16 mutations display distinct phenotypic differences. Patients with PC-K6a experience earlier onset, more extensive nail disease and more substantial disease outside palms and soles, as they reported a higher prevalence of oral leucokeratosis (P < 0·001), cysts (P < 0·001) and follicular hyperkeratosis (P < 0·001) compared with their PC-K16 counterparts. CONCLUSION: Phenotypic differences between patients with KRT6A and KRT16 mutations support adoption of a new classification system based on the mutant gene (PC-6a, PC-16) rather than the PC-1 nomenclature.


Subject(s)
Keratin-16/genetics , Keratin-6/genetics , Mutation/genetics , Pachyonychia Congenita/genetics , Adolescent , Adult , Aged , Child , Female , Genotype , Humans , Male , Middle Aged , Pachyonychia Congenita/classification , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL