Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 16477, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777630

ABSTRACT

Phthorimaea absoluta (Meyrick) (= Tuta absoluta) (Lepidoptera: Gelechiidae), is the most damaging insect pest threatening the production of tomato and other solanaceous vegetables in many countries. In this study, we predicted the risk of establishment and number of generations for P. absoluta in the current and future climatic conditions under two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) of the years 2050 and 2070 using insect life cycle modelling (ILCYM) software. We used a temperature-dependent phenology model to project three risk indices viz., establishment risk index (ERI), generation index (GI), and activity index (AI) based on temperature data. The model projected large suitable areas for P. absoluta establishment in the Southern hemisphere under current and future climatic scenarios, compared to the Northern part. However, the risk of P. absoluta is expected to increase in Europe, USA, Southern Africa, and some parts of Asia in the future. Under current conditions, P. absoluta can complete between 6 and 16 generations per year in suitable areas. However, an increase in GI between 1 and 3 per year is projected for most parts of the world in the future, with an increase in AI between 1 and 4. Our results provide information on the risk of establishment of P. absoluta which could guide decision-makers to develop control strategies adapted for specific agro-ecological zones.


Subject(s)
Lepidoptera , Moths , Solanum lycopersicum , Animals , Enterobius , Climate Change , Larva
2.
J Econ Entomol ; 116(5): 1540-1550, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37651730

ABSTRACT

Bagrada bug, Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae), is an invasive pest of cruciferous crops. The parasitoid Gryon aetherium Talamas (Hymenoptera: Scelionidae) is a promising biological control agent for B. hilaris because it can forage in the soil where B. hilaris deposits most of its eggs. In this study, we assessed parasitism by G. aetherium on B. hilaris eggs in situ in northcentral California, including the Salinas Valley where most cruciferous crops in the United States are grown. Parasitism was documented by leaving soil-filled trays under infested plants for 7-14 days, then removing eggs and holding them for emergence of parasitoids. Gryon aetherium accounted for over 99% of emerged parasitoids, and occurred at 11 of the 12 sampled sites. Of the 17,729 and 31,759 B. hilaris eggs collected in 2021 and 2022, 1,518 (8.84%) and 2,654 (8.36%) were parasitized by G. aetherium, respectively. Parasitism rates were generally higher inland and ranged from 3.64% to 44.93% in 2021 and from 1.01% to 23.04% in 2022, and never exceeded 15% on any sample dates at several coastal sites in the Salinas Valley. Discovery efficiency (a measure of the ability of parasitoids to locate egg patches) reached 80% or higher at all but 1 site, but exploitation efficiency (a measure of the ability of parasitoids to exploit the egg patch after it has been discovered) was generally <20%, suggesting that G. aetherium can locate egg patches efficiently but is less efficient at finding eggs within patches.

3.
Environ Entomol ; 52(3): 379-390, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37043620

ABSTRACT

Agricultural systems are often lacking in resources for natural enemies. Providing alternative prey can help natural enemies persist through periods of low pest abundance, although this approach has been rarely commercially implemented in open field crops. In this study, we tested the potential of eight plant species to provide alternative prey to natural enemies in lettuce fields over a 2-yr period. Results showed that the tested plants would not act as sources of the lettuce aphid Nasonovia ribisnigri Mosley (Hemiptera: Aphididae), the primary lettuce pest. Of the banker plants tested, barley contained high numbers of non-lettuce aphids and appeared to provide reliable habitat for hoverfly larvae. However, lettuce aphids were present on lettuce early in the season, and may have dwarfed any effects of nonlettuce aphids on natural enemy populations. Numbers of hoverfly larvae were also high in lettuce, but did not appear to track numbers of non-lettuce aphids on banker plants. In contrast, numbers of lacewing larvae were highest on plants containing high numbers of non-lettuce aphids, and predatory hemipterans appeared to be associated with numbers of thrips on banker plants. Although barley showed promise as a source of alternative aphids, it did not appear to improve pest control in the adjacent crop.


Subject(s)
Aphids , Thysanoptera , Animals , Lactuca , Larva , Pest Control, Biological , Ecosystem
4.
Insects ; 13(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36354834

ABSTRACT

Manipulating the factors that influence progeny production and sex ratio in parasitoids can help maximize the production of quarantine bioassays and/or mass releases. In a series of experiments, we studied the effects of several factors on offspring production and sex ratio in the parasitoid Gryon aetherium (Hymenoptera: Scelionidae), a candidate biological control agent for Bagrada hilaris (Hemiptera: Pentatomidae). Progeny production was influenced by maternal age and dropped when females were 24 or 28 days old and decreased on the second day of exposure. Overall, the offspring sex ratio was highly variable in G. aetherium and was affected by the duration of exposure, with higher proportions of females emerging after one day of exposure than after two days, but was not affected by female density, female age/host deprivation, or temperature during oviposition. Progeny production was affected by the temperature during oviposition and was highest at 26.6 °C. The results indicate that production of G. aetherium can be maximized at one day of exposure, using females that are less than 24 d old, and at temperatures of around 26 °C.

5.
Environ Entomol ; 51(6): 1106-1112, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36314997

ABSTRACT

Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) and Trichopria drosophilae (Perkins) (Hymenoptera: Diapriidae) are two cosmopolitan and generalist pupal parasitoids that are among a few of the resident parasitoids in North America capable of attacking Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), an invasive pest of small and soft fruit crops worldwide. Ganaspis brasiliensis (Ihering) is a specialist larval parasitoid of D. suzukii that was recently approved for biological control introduction against D. suzukii in the USA. As a solitary koinobiont species, G. brasiliensis oviposits in the host larva but emerges as an adult from the host puparium. This study investigated the discrimination ability and parasitism success by the pupal parasitoids towards D. suzukii pupae previously parasitized by G. brasiliensis, to examine whether interactions with resident parasitoids will affect G. brasiliensis after it is released in the USA. We found preliminary evidence that neither pupal parasitoid could discriminate towards D. suzukii pupae parasitized by early instars of G. brasiliensis. Pachycrepoideus vindemiae was able to successfully develop on D. suzukii pupae containing all preimaginal stages of G. brasiliensis, although parasitism success was significantly higher on those bearing later rather than early stages of G. brasiliensis. Trichopria drosophilae was only able to successfully develop on D. suzukii puparia containing early instars of G. brasiliensis. These results suggest that D. suzukii parasitized by the larval parasitoid could be subsequently attacked by the pupal parasitoids, possibly affecting the success of G. brasiliensis releases.


Subject(s)
Hymenoptera , Animals , Pupa , Drosophila , Larva , North America
6.
J Econ Entomol ; 115(4): 922-942, 2022 08 10.
Article in English | MEDLINE | ID: mdl-34984457

ABSTRACT

We provide recommendations for sampling and identification of introduced larval parasitoids of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). These parasitoids are either under consideration for importation (aka classical) biological control introductions, or their adventive (presumed to have been accidentally introduced) populations have recently been discovered in North America and Europe. Within the context of the ecology of D. suzukii and its parasitoids, we discuss advantages and disadvantages of estimating larval parasitism levels using different methods, including naturally collected fruit samples and sentinel baits. For most situations, we recommend repeated sampling of naturally occurring fruit rather than using sentinel baits to monitor seasonal dynamics of host plant-Drosophila-parasitoid associations. We describe how to separate Drosophilidae puparia from host fruit material in order to accurately estimate parasitism levels and establish host-parasitoid associations. We provide instructions for identification of emerging parasitoids and include a key to the common families of parasitoids of D. suzukii. We anticipate that the guidelines for methodology and interpretation of results that we provide here will form the basis for a large, multi-research team sampling effort in the coming years to characterize the biological control and nontarget impacts of accidentally and intentionally introduced larval parasitoids of D. suzukii in several regions of the world.


Subject(s)
Drosophila , Fruit , Animals , Europe , Insect Control/methods , Larva , North America
7.
J Econ Entomol ; 114(6): 2439-2451, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34694405

ABSTRACT

The mealybug, Planococcus ficus (Signoret), is a primary vineyard pest in California and other grape-growing regions throughout the World. Mating disruption programs are commercially available to manage Pl. ficus, but widespread adoption has been limited, in part, by high costs compared with insecticide programs. To improve mating disruption economic effectiveness, different deployment technologies (passive, aerosol, and microencapsulated formulations) were individually examined. Adult male Pl. ficus captures in pheromone traps and categorical ratings of vine infestation or crop damage suggest that all deployment strategies lowered mealybug densities or damage. Using passive dispensers, deployment rates of 310 and 465 per ha lowered Pl. ficus crop damage similar to 615 per ha, a rate commonly used in commercial operations; reduced rates would lower product and deployment costs. Meso dispensers, containing more a.i., deployed at 35 per ha did not have a treatment impact, but a microencapsulated formulation and aerosol canisters lowered male flight captures and/or crop damage. Male mealybug flight activity was greatest from 0500-1100 hr, which coincided with temperatures >16° and <32°C. These restricted times and temperatures suggest programable dispensers might allow pheromone deployment to coincide only with flight patterns. A large field trial using passive dispensers found greater treatment separation after 3 yr of pheromone deployment. Discrepancies in results among vineyards may be related to Pl. ficus density, but combined results from all trials suggest that different deployment technologies can be used to impact Pl. ficus densities and damage, even at reduced rates, especially with continued use over multiple seasons.


Subject(s)
Moths , Sex Attractants , Animals , Farms , Insect Control , Male , Pheromones , Reproduction , Sexual Behavior, Animal
8.
J Econ Entomol ; 114(2): 611-619, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33595640

ABSTRACT

Two egg parasitoids from Pakistan, Gryon sp. nr. gonikopalense Sharma (Hymenoptera: Scelionidae) and Trissolcus hyalinipennis Rajmohana & Narendran (Hymenoptera: Scelionidae), are currently being investigated as potential classical biocontrol agents for Bagrada hilaris Burmeister. The former is the most promising because of its ability to attack B. hilaris eggs in soil, but the latter was recently discovered in California. This study detailed the patch use and oviposition behavior of both species and assessed their relative foraging efficiency. We also investigated possible competitive interactions by assessing 1) the occurrence of intra- and interspecific host discrimination, 2) mutual interference between females (extrinsic competition), 3) the outcome of multiparasitism (intrinsic competition), and 4) the effect of competition on host suppression. Our results showed that T. hyalinipennis females tended to probe repeatedly in the same hosts leading to longer host patch time and lower foraging efficiency. Both species avoided conspecific superparasitism, but not multiparasitism. When the two species foraged simultaneously, G. sp. nr. gonikopalense seemed to be slightly superior in extrinsic competition, while neither species seemed to have an advantage in intrinsic competition. Also, neither species could develop as a facultative hyperparasitoid, but they inflicted non-reproductive mortality on eggs containing 4-d-old larvae of their competitor. Lastly, host mortality inflicted by G. sp. nr. gonikopalense and T. hyalinipennis when acting together appeared to be additive. These results suggest that the presence of T. hyalinipennis in California is unlikely to reduce G. sp. nr. gonikopalense efficiency, but will instead improve the biological control of B. hilaris.


Subject(s)
Hemiptera , Heteroptera , Hymenoptera , Animals , Biological Control Agents , Female , Host-Parasite Interactions , Pakistan
9.
Insects ; 11(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947862

ABSTRACT

The vine mealybug (VMB), Planococcus ficus (Hemiptera: Pseudococcidae), is a key insect pest of vineyards, and improvements in sustainable control of this pest are needed to meet increasing consumer demand for organically farmed products. One promising option is mating disruption. In a series of experiments conducted from 2004 to 2007, we tested the effects of mating disruption on trap captures of Pl. ficus males in pheromone-baited traps, on Pl. ficus numbers and age structure on vines, and on damage to grape clusters. From 2004 to 2005, the effects of dispenser load (mg active ingredient per dispenser) were also assessed, and dispensers were compared to a flowable formulation. Across all trials, mating disruption consistently reduced pheromone trap captures and often reduced mealybug numbers on vines and/or crop damage, regardless of the pheromone dose that was applied. Reductions in Pl. ficus densities in mating disruption plots were not accompanied by clear effects on mealybug population age structure; however, production of non-viable ovisacs by unmated females may have obscured differences in proportional representation of ovisacs. Pheromone trap captures were never lowered to zero (often called trap shut down), possibly because trials were conducted in vineyards with unusually high Pl. ficus densities. Trap-capture patterns in both treated and control plots commonly began low in April-May, increased in mid-July or August, and often decreased in September-October when post-harvest insecticides were applied. During the four-year trial, the release rate from plastic sachet dispensers was improved by industry cooperators as pheromone was released too quickly (2004) or not completely released during the season (2005-2006). The flowable formulation performed slightly better than dispensers at the same application dose. Results over all years suggest season-long coverage or late-season coverage may be as or more important than dose per hectare. Development of a dispenser with optimized season-long pheromone emission or targeted seasonal periods should be a future goal.

10.
Insects ; 11(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110919

ABSTRACT

The olive psyllid, Euphyllura olivina, is a newly invasive species to California with the potential to become an economical pest if it reaches the olive production regions of California's Central Valley. Here, we report on surveys undertaken in California to assess the psyllid's current distribution and the occurrence of parasitism. Additionally, we present results of foreign collections of its parasitoids and initial non-target studies of a possible biological control agent, the Mediterranean parasitoid Psyllaephagus euphyllurae. The current distribution of the psyllid appears to be limited to the California coast between Monterey and San Diego; there have been no reports of infestations on olives in the major production areas of central and northern California. Psyllaephagus euphyllurae was the major primary parasitoid found in our foreign collections. The potential non-target impact of P. euphyllurae was tested on three native North American psyllid species: Neophyllura arctostaphyli, Euglyptoneura nr. robusta, and Calophya nigrella. No P. euphyllurae developed on the non-target species during no-choice tests. Behavioral observations in choice tests confirmed no attack on the non-target hosts, although the parasitoid did remain longer on N. arctostaphyli-infested manzanita plants, and revealed no host feeding behavior.

11.
Environ Entomol ; 48(6): 1317-1322, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31603981

ABSTRACT

Perennial pepperweed, Lepidium latifolium L. (Brassicales: Brassicaceae), is an invasive weed that can form dense stands and displace native species. Bagrada hilaris Burmeister (Hemiptera: Pentatomidae) is a serious economic pest of Brassicaceae vegetable crops. Bagrada bug also feeds on L. latifolium and may interact with the plant fungal pathogen Albugo lepidii S.I. (Peronosporales: Albuginaceae) to affect biological control of L. latifolium. A series of laboratory experiments, including Y-tube olfactometer and host-choice tests, were conducted to investigate B. hilaris host-preference behavior. Adults were attracted to the odor of healthy L. latifolium compared with A. lepidii-infected leaves. Bagrada hilaris consistently preferred to feed on healthy L. latifolium when offered both healthy and A. lepidii-infected plants. Experiments were conducted to determine the effects of A. lepidii-infected L. latifolium on B. hilaris survival and development. Survival of all B. hilaris immature stages and adults was markedly reduced for those reared on A. lepidii-infected leaves. Total development time and stage-specific development were faster on healthy L. latifolium leaves compared with A. lepidii-infected leaves. In addition, the ability of B. hilaris adults to passively transmit the rust was studied. Our data demonstrated that B. hilaris could acquire the rust spores while feeding, but it did not passively transmit the pathogen to healthy plants.


Subject(s)
Heteroptera , Lepidium , Animals , Fungi , Herbivory , Plant Weeds
12.
Environ Entomol ; 48(3): 524-532, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31009532

ABSTRACT

No-choice tests can help select weed biological control agents with a high degree of host specificity but may exclude potentially effective agents that can develop on nontarget plants under laboratory conditions. The actual amount of damage to nontarget plants often goes unstudied, even though agents may exploit nontarget plants without inflicting significant harm. Furthermore, tests typically assess whether prospective agents can complete one generation on nontarget plants, and rarely examine whether agents are likely to persist on the nontarget plants over the long term. Pre-release assessments that occur over multiple generations of the agent could help determine whether prospective agents pose a threat to nontarget plants under field conditions. This study focused on the psyllid Arytinnis hakani Loginova (Hemiptera: Psyllidae), which is under consideration in California for release against the invasive shrub French broom, Genista monspessulana (L.) LAS Johnson. We examined the host suitability of seven nontarget Lupinus spp. (Fabales: Fabaceae) for the psyllid using no-choice tests, and assessed psyllid impacts on Lupinus arboreus Sims, which consistently supported psyllid oviposition and development. The psyllid oviposited on all of the tested Lupinus spp., and completed two generations on five of the Lupinus spp., although numbers of psyllids were highest on French broom. In an additional experiment, A. hakani did not affect growth or survival of L. arboreus, but reduced growth and dramatically reduced survival of French broom. Taken together, these results indicate that Lupinus spp. are suboptimal hosts for the psyllid and are unlikely to be significantly impacted by its feeding.


Subject(s)
Fabaceae , Genista , Hemiptera , Animals , California , Female , Prospective Studies
13.
J Insect Sci ; 18(4)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30101306

ABSTRACT

Alfalfa (Medicago sativa L.) (Fabales: Fabaceae) can be strategically planted as a trap crop for Lygus spp. in California's organic strawberry fields. Alfalfa has been shown to attract both Lygus spp. and, in turn, a Lygus-specific parasitoid, Peristenus relictus (Ruthe) (Hymenoptera: Braconidae). However, the impact of alfalfa trap-cropped strawberries on the Lygus spp. predator complex is unknown. Here we identify key predators of Lygus spp. found in organic strawberry. First, a general survey was conducted at an organic, non-trap cropped strawberry farm, to quantify predator abundance and to qualitatively assess their feeding activity on Lygus spp. We identified the 11 most abundant predator taxa present and, by using a Lygus-specific PCR assay, determined that about 18% of the insects and spiders contained Lygus spp. remains in their guts. We then conducted a study to examine alfalfa's role in conserving the most relevant predators in trap-cropped organic strawberries. Specifically, we quantified predator abundance and qualitatively measured predator feeding activity (by gut analysis) on Lygus spp. collected in strawberry plots either lacking or containing an alfalfa trap crop. Data revealed that some predator taxa, including the numerically dominant predator, Orius tristicolor (White) (Hemiptera: Anthocoridae), aggregated in alfalfa trap crops. The gut content analyses revealed that insect and spider predators collected from the alfalfa trap crop had a significantly higher proportion of their population containing Lygus spp. remains than those collected from nearby rows of strawberries. These results suggest that alfalfa trap cropping might be a useful tactic for conserving the biological control services of generalist predators in organically grown strawberries in California.


Subject(s)
Fragaria , Insecta/physiology , Medicago sativa , Predatory Behavior , Spiders/physiology , Animals , California , Crop Production/methods , Food Chain , Fragaria/growth & development , Heteroptera/growth & development , Heteroptera/physiology , Insect Control , Medicago sativa/growth & development , Nymph/growth & development , Nymph/physiology , Pest Control, Biological , Population Dynamics
14.
Environ Entomol ; 47(3): 764-772, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29635366

ABSTRACT

Pachycrepoideus vindemiae (Rondani) and Trichopria drosophilae (Perkins) are among a few indigenous parasitoids attacking the invasive Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in North America. Both parasitoid species occur in California, whereas only P. vindemiae has been reported from Oregon. We compared the thermal performance of the California populations of P. vindemiae and T. drosophilae, and the Oregon population of P. vindemiae at eight constant temperatures (12.6-32.8°C). Both P. vindemiae populations could develop at all tested temperatures. T. drosophilae failed to develop at or above 29.6°C. This species was, however, able to develop at a diurnal temperature regime of 15-32°C, and survival was higher in older developmental stages. T. drosophilae was less tolerant to both low and high temperatures than P. vindemiae, whereas the Oregon P. vindemiae population was more cold-tolerant but less heat-tolerant than the California population in terms of offspring survival, development, and reproduction. To develop storage strategies for mass-cultured parasitoids, we compared the cold tolerance of immature P. vindemiae and T. drosophilae of the California populations at 12°C for 1, 2, or 3 mo, followed by a 23°C holding period. Successful development to the adult stage decreased as cold storage duration increased. Successful development, however, increased when cold storage was initiated during the older developmental stages for 1-mo exposure for both parasitoid species. The results are discussed with regards to parasitoid thermal adaptation and the potential use of P. vindemiae and T. drosophilae for biological control of spotted-wing drosophila.


Subject(s)
Drosophila/parasitology , Wasps/physiology , Acclimatization , Animals , California , Drosophila/growth & development , Larva/growth & development , Larva/physiology , Longevity , Oregon , Pupa/growth & development , Pupa/parasitology , Reproduction , Temperature , Wasps/growth & development
15.
J Econ Entomol ; 111(2): 672-679, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29361129

ABSTRACT

Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae), form mutualisms with hemipteran pests in crop systems. In vineyards, they feed on honeydew produced by mealybugs and soft scales, which they tend and protect from natural enemies. Few options for controlling Argentine ants are available; one of the more effective approaches is to use liquid baits containing a low dose of an insecticide. Knowledge of ant foraging patterns is required to estimate how many bait stations to deploy per unit area. To measure how far ants move liquid bait in vineyards, we placed bait stations containing sugar water and a protein marker in plots for 6 d, and then collected ants along transects extending away from bait stations. The ants moved an average of 16.08 m and 12.21 m from bait stations in the first and second years of the study, respectively. Marked ants were found up to 63 m from bait stations; however, proportions of marked ants decreased exponentially as distance from the bait station increased. Results indicate that Argentine ants generally forage at distances <36 m in California vineyards, thus suggesting that insecticide bait stations must be deployed at intervals of 36 m or less to control ants. We found no effect of insecticide on distances that ants moved the liquid bait, but this may have been because bait station densities were too low to affect the high numbers of Argentine ants that were present at the study sites.


Subject(s)
Ants , Behavior, Animal , Insect Control , Vitis , Animals , California
16.
Environ Entomol ; 46(3): 502-510, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28379400

ABSTRACT

Generalist predators such as spiders may help mitigate the spread and impact of exotic herbivores. The lack of prey specificity and long generation times of spiders may allow them to persist when pests are scarce, and to limit the growth of pest populations before they reach damaging levels. We examined whether resident spiders are likely to play a role in maintaining populations of the invasive light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), below outbreak levels in California. We surveyed the spider community on two E. postvittana host plants, the ornamental Australian tea tree, Leptospermum laevigatum, and the weed French broom, Genista monspessulana, to characterize spider and larval E. postvittana abundance and spider species composition throughout the year. Spider densities and species composition showed slight seasonal changes. Spiders were present during periods of high and low E. postvittana abundance. Anyphaenid hunting spiders, Anyphaena aperta Banks in Australian tea tree and Anyphaena pacifica Banks in French broom, dominated spider species composition at four of five sampled sites, and underwent only slight seasonal variation in abundance. Adult A. aperta were rare at all times of the year, suggesting that high mortality among juvenile A. aperta limits the potential of this species as a predator of E. postvittana. Nevertheless, the continued presence of spiders throughout the year indicates that the resident spider community is likely to play a key role in reducing E. postvittana populations in California.


Subject(s)
Food Chain , Genista/physiology , Leptospermum/physiology , Moths/physiology , Spiders/physiology , Animals , Body Size , California , Introduced Species , Larva/growth & development , Larva/physiology , Moths/growth & development , Pest Control, Biological , Population Dynamics , Seasons , Species Specificity , Spiders/growth & development
17.
Environ Entomol ; 46(3): 552-558, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28402389

ABSTRACT

The impacts of weed biological control agents may vary with plant ontogeny. As plants grow, structural and chemical changes can alter plant resistance, which may reduce herbivory via chemical or structural defenses, and plant tolerance, which may enable plants to maintain fitness despite attack. Resistance and tolerance generally increase as plants grow. Nonetheless, prerelease tests of agent efficacy often overlook plant ontogeny. Here, we assess the performance and impacts of a candidate biocontrol agent, the psyllid Arytinnis hakani (Loginova), in relation to the age of its host plant, the invasive shrub French broom, Genista monspessulana. We also examined whether the psyllid can consistently kill plants when its densities are sufficiently high. Survival of psyllids to adulthood and the timing of adult emergence did not differ between plant sizes, indicating that performance of nymphs was not influenced by plant size. However, adult psyllid survival was reduced on small plants, suggesting that nymphs and adults responded differently to ontogenetic changes in plant quality. Psyllids affected the growth of small and large plants similarly; all measured plant growth parameters were lower in the presence of psyllids regardless of plant size. In a separate experiment, effects on plant survival depended on psyllid density, as higher realized densities of ∼9 psyllids per cm stem length were necessary to consistently kill plants. Thus, results suggest that the psyllid would be equally effective on a range of plant sizes, particularly at high densities, and show the potential of the psyllid to help control French broom in California.


Subject(s)
Genista/growth & development , Hemiptera/physiology , Introduced Species , Animals , California , Hemiptera/growth & development , Nymph/growth & development , Nymph/physiology , Pest Control, Biological , Population Density
18.
Environ Entomol ; 45(1): 109-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26628515

ABSTRACT

The postrelease impact of weed biological control agents on their target weeds is rarely assessed. This study focuses on the impacts of the univoltine broom psyllid Arytainilla spartiophila Forster on the growth of its target weed, the invasive shrub Scotch broom, Cytisus scoparius (L.) Link (Fabaceae), in California. Arytainilla spartiophila is an adventive species that has been present in North America for several decades. In a greenhouse experiment, plant growth as measured by both height and total stem length (height + length of all branches) was reduced on plants that received psyllids, and psyllid densities were negatively correlated to proportional change in plant height. There were no effects on number of leaves, however. Furthermore, the psyllid had no statistically detectable impacts on plant growth parameters in a field experiment, underscoring how results obtained under controlled conditions may not fully predict the performance of biological control agents in the field. The high psyllid mortality that occurred at higher psyllid densities in both the greenhouse and the field suggests that the impacts of A. spartiophila may be moderated by intraspecific competition.


Subject(s)
Cytisus/growth & development , Hemiptera/physiology , Pest Control, Biological , Plant Weeds/growth & development , Weed Control , Animals , California , Introduced Species
19.
Ecol Appl ; 21(2): 565-76, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21563586

ABSTRACT

The presence of intact natural ecosystems in agricultural landscapes can mitigate losses in the diversity of natural enemies and enhance ecosystem services. However, native natural enemies may fail to persist in agroecosystems if invaders dominate species interactions. In this study, native and nonnative spiders were sampled along transects that extended from oak woodland and riparian zones into surrounding California vineyards, to assess the role of natural habitat as a source for spider biodiversity in the vineyard landscape, and to compare the dominance of exotic Cheiracanthium spiders between habitats. Many spider species were more abundant in natural habitat than in vineyards, and numbers of spiders and spider species within vineyards were higher at the vineyard edge adjacent to oak woodland. These results suggest that natural habitat is a key source for spiders in vineyards. The positive effect of oak woodland on the vineyard spider community extended only to the vineyard edge, however. Proportions of Cheiracanthium spiders increased dramatically in the vineyard, while numbers of native wandering spiders (the native ecological homologues of Cheiracanthium spiders) decreased. Dispersal limitation and strong habitat preferences may have prevented native wandering spiders from establishing far from the vineyard edge. Exotic Cheiracanthium spiders, in contrast, may possess specific adaptations to vineyards or to a wide range of habitats. Results suggest that the ecosystem services provided by intact natural habitat may be limited in agricultural landscapes that are dominated by invasive species.


Subject(s)
Agriculture , Ecosystem , Introduced Species , Spiders/physiology , Animals , California , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...