Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Intell Med ; 148: 102747, 2024 02.
Article in English | MEDLINE | ID: mdl-38325919

ABSTRACT

The domain shift, or acquisition shift in medical imaging, is responsible for potentially harmful differences between development and deployment conditions of medical image analysis techniques. There is a growing need in the community for advanced methods that could mitigate this issue better than conventional approaches. In this paper, we consider configurations in which we can expose a learning-based pixel level adaptor to a large variability of unlabeled images during its training, i.e. sufficient to span the acquisition shift expected during the training or testing of a downstream task model. We leverage the ability of convolutional architectures to efficiently learn domain-agnostic features and train a many-to-one unsupervised mapping between a source collection of heterogeneous images from multiple unknown domains subjected to the acquisition shift and a homogeneous subset of this source set of lower cardinality, potentially constituted of a single image. To this end, we propose a new cycle-free image-to-image architecture based on a combination of three loss functions : a contrastive PatchNCE loss, an adversarial loss and an edge preserving loss allowing for rich domain adaptation to the target image even under strong domain imbalance and low data regimes. Experiments support the interest of the proposed contrastive image adaptation approach for the regularization of downstream deep supervised segmentation and cross-modality synthesis models.


Subject(s)
Diagnostic Imaging , Learning , Educational Status , Image Processing, Computer-Assisted
2.
Cancers (Basel) ; 13(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802499

ABSTRACT

PURPOSE: Stereotactic radiotherapy (SRT) has become widely accepted as a treatment of choice for patients with a small number of brain metastases that are of an acceptable size, allowing for better target dose conformity, resulting in high local control rates and better sparing of organs at risk. An MRI-only workflow could reduce the risk of misalignment between magnetic resonance imaging (MRI) brain studies and computed tomography (CT) scanning for SRT planning, while shortening delays in planning. Given the absence of a calibrated electronic density in MRI, we aimed to assess the equivalence of synthetic CTs generated by a generative adversarial network (GAN) for planning in the brain SRT setting. METHODS: All patients with available MRIs and treated with intra-cranial SRT for brain metastases from 2014 to 2018 in our institution were included. After co-registration between the diagnostic MRI and the planning CT, a synthetic CT was generated using a 2D-GAN (2D U-Net). Using the initial treatment plan (Pinnacle v9.10, Philips Healthcare), dosimetric comparison was performed using main dose-volume histogram (DVH) endpoints in respect to ICRU 91 guidelines (Dmax, Dmean, D2%, D50%, D98%) as well as local and global gamma analysis with 1%/1 mm, 2%/1 mm and 2%/2 mm criteria and a 10% threshold to the maximum dose. t-test analysis was used for comparison between the two cohorts (initial and synthetic dose maps). RESULTS: 184 patients were included, with 290 treated brain metastases. The mean number of treated lesions per patient was 1 (range 1-6) and the median planning target volume (PTV) was 6.44 cc (range 0.12-45.41). Local and global gamma passing rates (2%/2 mm) were 99.1 CI95% (98.1-99.4) and 99.7 CI95% (99.6-99.7) respectively (CI: confidence interval). DVHs were comparable, with no significant statistical differences regarding ICRU 91's endpoints. CONCLUSIONS: Our study is the first to compare GAN-generated CT scans from diagnostic brain MRIs with initial CT scans for the planning of brain stereotactic radiotherapy. We found high similarity between the planning CT and the synthetic CT for both the organs at risk and the target volumes. Prospective validation is under investigation at our institution.

SELECTION OF CITATIONS
SEARCH DETAIL
...