Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(11): 2166-2179, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35078926

ABSTRACT

Malfunctioning synaptic plasticity is one of the major mechanisms contributing to the development of chronic pain. We studied spike-timing dependent depression (tLTD) in the anterior cingulate cortex (ACC) of male mice, a brain region involved in processing emotional aspects of pain. tLTD onto layer 5 pyramidal neurons depended on postsynaptic calcium-influx through GluN2B-containing NMDARs and retrograde signaling via nitric oxide to reduce presynaptic release probability. After chronic constriction injury of the sciatic nerve, a model for neuropathic pain, tLTD was rapidly impaired; and this phenotype persisted even beyond the time of recovery from mechanical sensitization. Exclusion of GluN2B-containing NMDARs from the postsynaptic site specifically at projections from the anterior thalamus to the ACC caused the tLTD phenotype, whereas signaling downstream of nitric oxide synthesis remained intact. Thus, transient neuropathic pain can leave a permanent trace manifested in the disturbance of synaptic plasticity in a specific afferent pathway to the cortex.SIGNIFICANCE STATEMENT Synaptic plasticity is one of the main mechanisms that contributes to the development of chronic pain. Most studies have focused on potentiation of excitatory synaptic transmission, but very little is known about the reduction in synaptic strength. We have focused on the ACC, a brain region associated with the processing of emotional and affective components of pain. We studied spike-timing dependent LTD, which is a biologically plausible form of synaptic plasticity, that depends on the relative timing of presynaptic and postsynaptic activity. We found a long-lasting and pathway-specific suppression of the induction mechanism for spike-timing dependent LTD from the anterior thalamus to the ACC, suggesting that this pathology might be involved in altered emotional processing in pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , Chronic Pain/metabolism , Depression , Gyrus Cinguli/physiology , Male , Mice , Neuralgia/metabolism , Neuronal Plasticity , Nitric Oxide/metabolism
2.
Cell Rep ; 34(11): 108867, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730568

ABSTRACT

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy.


Subject(s)
Conditioning, Classical , GABAergic Neurons/physiology , Glutamates/metabolism , Learning , Ventral Tegmental Area/physiology , Acoustic Stimulation , Animals , Choline/metabolism , Cues , Discrimination Learning , Electroshock , Fear , Female , Interneurons/physiology , Male , Mice, Inbred C57BL , Synapses/physiology , Thalamus/physiology , Vesicular Glutamate Transport Protein 2/metabolism
3.
R Soc Open Sci ; 7(9): 200701, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33047031

ABSTRACT

Astrocytes provide neurons with structural support and energy in form of lactate, modulate synaptic transmission, are insulin sensitive and act as gatekeeper for water, ions, glutamate and second messengers. Furthermore, astrocytes are important for glucose sensing, possess neuroendocrine functions and also play an important role in cerebral lipid metabolism. To answer the question, if there is a connection between lipid metabolism and insulin action in human astrocytes, we investigated if storage of ectopic lipids in human astrocytes has an impact on insulin signalling in those cells. Human astrocytes were cultured in the presence of a lipid emulsion, consisting of fatty acids and triglycerides, to induce ectopic lipid storage. After several days, cells were stimulated with insulin and gene expression profiling was performed. In addition, phosphorylation of Akt as well as glycogen synthesis and cell proliferation was assessed. Ectopic lipid storage was detected in human astrocytes after lipid exposure and lipid storage was persistent even when the fat emulsion was removed from the cell culture medium. Chronic exposure to lipids induced profound changes in the gene expression profile, whereby some genes showed a reversible gene expression profile upon removal of fat, and some did not. This included FOXO-dependent expression patterns. Furthermore, insulin-induced phosphorylation of Akt was diminished and also insulin-induced glycogen synthesis and proliferation was impaired in lipid-laden astrocytes. Chronic lipid exposure induces lipid storage in human astrocytes accompanied by insulin resistance. Analyses of the gene expression pattern indicated the potential of a partially reversible gene expression profile. Targeting astrocytic insulin resistance by reducing ectopic lipid load might represent a promising treatment target for insulin resistance of the brain in obesity, diabetes and neurodegeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...