Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
2.
J Proteome Res ; 23(1): 430-448, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38127799

ABSTRACT

NMR-based metabolomics aims at recovering biological information by comparing spectral data from samples of biological interest and appropriate controls. Any statistical analysis performed on the data matrix relies on the proper peak alignment to produce meaningful results. Through the last decades, several peak alignment algorithms have been proposed, as well as alternatives like spectral binning or strategies for annotation and quantification, the latter depending on reference databases. Most of the alignment algorithms, mainly based on segmentation of the spectra, present limitations for regions with peak overlap or cases of frequency order exchange. Here, we present our multiplet-assisted peak alignment algorithm, a new methodology that consists of aligning peaks by matching multiplet profiles of f1 traces from J-resolved spectra. A correspondence matrix with the linked f1 traces is built, and multivariate data analysis can be performed on it to obtain useful information from the data, overcoming the issues of peak overlap and frequency crossovers. Statistical total correlation spectroscopy can be applied on the matrix as well, toward a better identification of molecules of interest. The results can be queried on one-dimensional (1D) 1H databases or can be directly coupled to our previously published Chemical Shift Multiplet Database.


Subject(s)
Magnetic Resonance Imaging , Metabolomics , Proton Magnetic Resonance Spectroscopy , Metabolomics/methods , Magnetic Resonance Spectroscopy/methods , Algorithms
3.
J Proteome Res ; 19(8): 2977-2988, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32450699

ABSTRACT

NMR-based metabolomics requires proper identification of metabolites to draw conclusions from the system under study. Normally, multivariate data analysis is performed using 1D 1H NMR spectra, and identification of peaks (and then compounds) relevant to the classification is accomplished using database queries as a first step. 1D 1H NMR spectra of complex mixtures often suffer from peak overlap. To overcome this issue, several studies employed the projections of the (tilted and symmetrized) 2D 1H J-resolved (JRES) spectra, p-JRES, which are similar to 1D 1H decoupled spectra. Nonetheless, there are no public databases available that allow searching for chemical shift spectral data for multiplets. We present the Chemical Shift Multiplet Database (CSMDB), built utilizing JRES spectra obtained from the Birmingham Metabolite Library. The CSMDB provides scoring accounting for both matched and unmatched peaks from a query list and the database hits. This input list is generated from a projection of a 2D statistical correlation analysis on the JRES spectra, p-(JRES-STOCSY), being able to compare the multiplets for the matched peaks, in essence, the f1 traces from the JRES-STOCSY spectrum and from the database hit. The inspection of the unmatched peaks for the database hit allows the retrieval of peaks in the query list that have a decreased correlation coefficient due to low intensities. The CSMDB is coupled to "ConQuer ABC", which permits the assessment of biological correlation by means of consecutive queries with the unmatched peaks in the first and subsequent queries.


Subject(s)
Metabolomics , Correlation of Data , Databases, Factual , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy
4.
J Proteome Res ; 18(5): 2241-2253, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30916564

ABSTRACT

The identification of metabolites in complex biological matrices is a challenging task in 1D 1H-NMR-based metabolomics studies. Statistical total correlation spectroscopy (STOCSY) has emerged for aiding the structural elucidation by revealing the peaks that present a high correlation to a driver peak of interest (which would likely belong to the same molecule). However, in these studies, the signals from metabolites are normally present as a mixture of overlapping resonances, limiting the performance of STOCSY. As an alternative to avoid the overlap issue, 2D 1H homonuclear J-resolved (JRES) spectra were projected, in their usual tilted and symmetrized processed form, and STOCSY was applied on these 1D projections (p-JRES-STOCSY). Nonetheless, this approach suffers in cases where the signals are very close. In addition, STOCSY was applied to the whole JRES spectra (also tilted) to identify correlated multiplets, although the overlap issue in itself was not addressed directly and the subsequent search in databases is complicated in cases of higher order coupling. With these limitations in mind, in the present work, we propose a new methodology based on the application of STOCSY on a set of nontilted JRES spectra, detecting peaks that would overlap in 1D spectra of the same sample set. Correlation comparison analysis for peak overlap detection (COCOA-POD) is able to reconstruct projected 1D STOCSY traces that result in more suitable database queries, as all peaks are summed at their f2 resonances instead of the resonance corresponding to the multiplet center in the tilted JRES spectra. (The peak dispersion and resolution enhancement gained are not sacrificed by the projection.) Besides improving database queries with better peak lists obtained from the projections of the 2D STOCSY analysis, the overlap region is examined, and the multiplet itself is analyzed from the correlation trace at 45° to obtain a cleaner multiplet profile, free from contributions from uncorrelated neighboring peaks.


Subject(s)
Correlation of Data , Magnetic Resonance Spectroscopy/statistics & numerical data , Metabolome , Metabolomics/statistics & numerical data , 3-Hydroxybutyric Acid/blood , Alanine/blood , Blood Glucose/analysis , Databases, Factual , Humans , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods
5.
J Phys Chem A ; 115(50): 14243-8, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22082296

ABSTRACT

The proton transfer from 2-naphthol to aliphatic amines was studied in supercritical CO(2) (scCO(2)) and in cyclohexane as reference solvent, by absorption and fluorescence spectroscopy and by time-resolved emission. Irradiation of 2-naphthol in scCO(2) in the presence of ethyldiisopropylamine shows dynamic fluorescence quenching of the acidic form of 2-naphthol and emission from the basic form. Fluorescence excitation spectra show that the emission of the basic form is originated upon excitation of the acidic form. The interaction between 2-naphthol and the amines is described by the formation of a complex with proton donor-acceptor character in the ground and excited states of 2-naphthol. The acidity increase of 2-naphthol upon electronic excitation to the first excited singlet in scCO(2) is as high as in water. Proton transfer quantum yields of 0.6 can be easily achieved in scCO(2). The results have implications for carrying out acid-base catalyzed reactions in scCO(2).


Subject(s)
Alkanes/chemistry , Amines/chemistry , Carbon Dioxide/chemistry , Naphthols/chemistry , Protons , Acids/chemistry , Catalysis , Chemistry, Physical , Cold Temperature , Cyclohexanes/chemistry , Fluorescence , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Molecular Structure , Pressure , Solvents/chemistry , Spectrometry, Fluorescence , Water
6.
J Phys Chem A ; 113(19): 5531-9, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19378934

ABSTRACT

The photophysics and photochemistry of (1-biphenyl-4-yl-1-methyl-ethyl)-tert-butyl diazene were thoroughly studied by laser flash photolysis from the picosecond to the microsecond time domain. The compound has favorable features as a radical photoinitiator and as a probe for cage effect studies in liquids, supercritical fluids, and compressed gases. The biphenyl moiety acts as an antenna efficiently transferring electronic energy to the dissociative (1)n,pi* state centered on the azo moiety. By picosecond experiments irradiating at the biphenyl- and at the azo-centered transitions, we were able to demonstrate this fact as well as determine a lifetime of 0.7 ps for the buildup of 1-biphenyl-4-yl-1-methyl-ethyl radicals (BME*). The sum of in-cage reaction rate constants of BME* radicals by combination and disproportionation is 5 x 10(10) s(-1). The free radical quantum yield in solution is 0.21 (phi(BME*)) in n-hexane at room temperature, whereas the dissociation quantum yield approaches 50%. The symmetric ketone, 2,4-bis-biphenyl-4-yl-2,4-dimethyl-pentan-2-one, was used as a reference compound for the production and reaction of BME* radicals. Transient IR measurements show CO stretching bands of the excited (3)pi,pi* and (1)n,pi* states but no dissociation up to 0.5 ns. A fluorescence lifetime of 1 ns for this ketone is consistent with this observation. By transient actinometry and kinetic decays in the microsecond time range, we measured epsilon(BME*) = (2.3 +/- 0.2) x 10(4) M(-1) cm(-1) at 325 nm and a second-order rate constant of 5.8 x 10(9) M(-1) s(-1) for the consumption of BME* radicals.

7.
J Phys Chem A ; 113(18): 5289-95, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19364108

ABSTRACT

We studied the photolysis of (1-biphenyl-4-yl-1-methyl-ethyl)-tert-butyl diazene in supercritical CO(2) and Xe, as well as in compressed Kr. The compound has good solubility in the mentioned fluids, allowing the photolysis measurements to be performed in CO(2) at 1.4 K above T(c) and at pressures as low as 70 bar. We monitored relative cage effect after nanosecond laser pulses by measuring the absorbance at 320 nm (DeltaA(t-->0)) corresponding to the total amount of out-of-cage 1-biphenyl-4-yl-1-methyl-ethyl radical (BME.) produced after nitrogen loss of the diazene. In supercritical CO(2) and Xe, isothermal values of DeltaA(t-->0) showed an increase-decrease behavior with increasing pressure at constant temperature, a typical feature of the transition from the solvent energy transfer to the friction controlled regimes. The comparison of the behavior of DeltaA(t-->0) in CO(2) at reduced temperatures between 1.004 and 1.027, in Xe, and in Kr points to an absence of enhanced cage effect near the critical point. Compatibility with spectroscopic data is analyzed.


Subject(s)
Biphenyl Compounds/chemistry , Gases/chemistry , Imides/chemistry , Photolysis , Absorption , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL