Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(4): e0119454, 2015.
Article in English | MEDLINE | ID: mdl-25849082

ABSTRACT

Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.


Subject(s)
Arachis/genetics , Chromosome Mapping/methods , Fatty Acid Desaturases/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Plant Proteins/genetics , Quantitative Trait Loci , Arachis/growth & development , Arachis/metabolism , Chromosomes, Plant/genetics , Gene Expression Regulation , Genetic Linkage , Genotype , Microsatellite Repeats , Phenotype , Plant Proteins/metabolism
2.
Genet Res ; 89(2): 93-106, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17669229

ABSTRACT

Thirty-one genomic SSR markers with a M13 tail attached were used to assess the genetic diversity of the peanut mini core collection. The M13-tailed method was effective in discriminating almost all the cultivated and wild accessions. A total of 477 alleles were detected with an average of 15.4 alleles per locus. The mean polymorphic information content (PIC) score was 0.687. The cultivated peanut (Arachis hypogaea L.) mini core produced a total of 312 alleles with an average of 10.1 alleles per locus. A neighbour-joining tree was constructed to determine the interspecific and intraspecific relationships in this data set. Almost all the peanut accessions in this data set classified into subspecies and botanical varieties such as subsp. hypogaea var. hypogaea, subsp. fastigiata var. fastigiata, and subsp. fastigiata var. vulgaris clustered with other accessions with the same classification, which lends further support to their current taxonomy. Alleles were sequenced from one of the SSR markers used in this study, which demonstrated that the repeat motif is conserved when transferring the marker across species borders. This study allowed the examination of the diversity and phylogenetic relationships in the peanut mini core which has not been previously reported.


Subject(s)
Arachis/genetics , Bacteriophage M13/genetics , Crops, Agricultural/genetics , Genetic Variation , Microsatellite Repeats/genetics , Sequence Analysis, DNA/methods , Arachis/classification , Base Sequence , DNA Primers/analysis , DNA Primers/genetics , Molecular Sequence Data , Phylogeny , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL