Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0297615, 2024.
Article in English | MEDLINE | ID: mdl-38335180

ABSTRACT

The lack of accuracy in the current prostate specific antigen (PSA) test for prostate cancer (PCa) screening causes around 60-75% of unnecessary prostate biopsies. Therefore, alternative diagnostic methods that have better accuracy and can prevent over-diagnosis of PCa are needed. Researchers have examined various potential biomarkers for PCa, and of those fatty acids (FAs) markers have received special attention due to their role in cancer metabolomics. It has been noted that PCa metabolism prefers FAs over glucose substrates for continued rapid proliferation. Hence, we proposed using a urinary FAs based model as a non-invasive alternative for PCa detection. Urine samples collected from 334 biopsy-designated PCa positive and 232 biopsy-designated PCa negative subjects were analyzed for FAs and lipid related compounds by stir bar sorptive extraction coupled with gas chromatography/mass spectrometry (SBSE-GC/MS). The dataset was split into the training (70%) and testing (30%) sets to develop and validate logit models and repeated for 100 runs of random data partitioning. Over the 100 runs, we confirmed the stability of the models and obtained optimal tuning parameters for developing the final FA based model. A PSA model using the values of the patients' PSA test results was constructed with the same cohort for the purpose of comparing the performances of the FA model against PSA test. The FA final model selected 20 FAs and rendered an AUC of 0.71 (95% CI = 0.67-0.75, sensitivity = 0.48, and specificity = 0.83). In comparison, the PSA model performed with an AUC of 0.51 (95% CI = 0.46-0.66, sensitivity = 0.44, and specificity = 0.71). The study supports the potential use of urinary FAs as a stable and non-invasive alternative test for PCa diagnosis.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prostate-Specific Antigen , Biomarkers, Tumor/urine , Prostatic Neoplasms/pathology , Biopsy
2.
Am J Cancer Res ; 14(1): 192-209, 2024.
Article in English | MEDLINE | ID: mdl-38323272

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer-related death in American men after lung cancer. The current PCa diagnostic method, the serum prostate-specific antigen (PSA) test, is not specific, thus, alternatives are needed to avoid unnecessary biopsies and over-diagnosis of clinically insignificant PCa. To explore the application of metabolomics in such effort, urine samples were collected from 386 male adults aged 44-93 years, including 247 patients with biopsy-proven PCa and 139 with biopsy-proven negative results. The PCa-positive group was further subdivided into two groups: low-grade (ISUP Grade Group = 1; n = 139) and intermediate/high-grade (ISUP Grade Group ≥ 2; n = 108). Volatile organic compounds (VOCs) in urine were extracted by stir bar sorptive extraction (SBSE) and analyzed using thermal desorption with gas chromatography and mass spectrometry (GC-MS). We used machine learning tools to develop and evaluate models for PCa diagnosis and prognosis. In total, 22,538 VOCs were identified in the urine samples. With regularized logistic regression, our model for PCa diagnosis yielded an area under the curve (AUC) of 0.99 and 0.88 for the training and testing sets respectively. Furthermore, the model for differentiating between low-grade and intermediate/high-grade PCa yielded an average AUC of 0.78 based on a repeated test-sample approach for cross-validation. These novel methods using urinary VOCs and logistic regression were developed to fill gaps in PCa screening and assessment of PCa grades prior to biopsy. Our study findings provide a promising alternative or adjunct to current PCa screening and diagnostic methods to better target patients for biopsy and mitigate the challenges associated with over-diagnosis and over-treatment of PCa.

3.
Am J Clin Exp Urol ; 11(6): 481-499, 2023.
Article in English | MEDLINE | ID: mdl-38148934

ABSTRACT

BACKGROUND: Cancer detection presents challenges regarding invasiveness, cost, and reliability. As a result, exploring alternative diagnostic methods holds significant clinical importance. Urinary metabolomic profiling has emerged as a promising avenue; however, its application for cancer diagnosis may be influenced by sample preparation or storage conditions. OBJECTIVE: This study aimed to assess the impact of sample storage and processing conditions on urinary volatile organic compounds (VOCs) profiles and establish a robust standard operating procedure (SOP) for such diagnostic applications. METHODS: Five key variables were investigated: storage temperatures, durations, freeze-thaw cycles, sample collection conditions, and sample amounts. The analysis of VOCs involved stir bar sorptive extraction coupled with thermal desorption-gas chromatography/mass spectrometry (SBSE-TD-GC-MS), with compound identification facilitated by the National Institute of Standards and Technology Library (NIST). Extensive statistical analysis, including combined scatterplot and response surface (CSRS) plots, partial least squares-discriminant analysis (PLS-DA), and probability density function plots (PDFs), were employed to study the effects of the factors. RESULTS: Our findings revealed that urine storage duration, sample amount, temperature, and fasting/non-fasting sample collection did not significantly impact urinary metabolite profiles. This suggests flexibility in urine sample collection conditions, enabling individuals to contribute samples under varying circumstances. However, the influence of freeze-thaw cycles was evident, as VOC profiles exhibited distinct clustering patterns based on the number of cycles. This emphasizes the effect of freeze-thaw cycles on the integrity of urinary profiles. CONCLUSIONS: The developed SOP integrating SBSE-TD-GC-MS and statistical analyses can serve as a valuable tool for analyzing urinary organic compounds with minimal preparation and sensitive detection. The findings also support that urinary VOCs for cancer screening and diagnosis could be a feasible alternative offering a robust, non-invasive, and sensitive approach for cancer screening.

4.
Chemosphere ; 338: 139439, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37429381

ABSTRACT

Fluorotelomer alcohols (FTOHs) are one of the major classes of per- and polyfluoroalkyl substances (PFAS). Due to their potential toxicity, persistence, and ubiquitous presence in the environment, some common PFAS are voluntarily phased out; while FTOHs are used as alternatives to conventional PFAS. FTOHs are precursors of perfluorocarboxylic acids (PFCAs) and therefore they are commonly detected in water matrices, which eventually indicate PFAS contamination in drinking water supplies and thus a potential source of human exposure. Even though studies have been conducted nationwide to evaluate the degree of FTOHs in the water environment, robust monitoring is lacking because of the unavailability of simple and sustainable analytical extraction and detection methods. To fill the gap, we developed and validated a simple, rapid, minimal solvent use, no clean-up, and sensitive method for the determination of FTOHs in water by stir bar sorptive extraction (SBSE) coupled with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Three commonly detected FTOHs (6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) were selected as the model compounds. Factors such as extraction time, stirring speed, solvent composition, salt addition, and pH were investigated to achieve optimal extraction efficiency. This "green chemistry" based extraction provided good sensitivity and precision with low method limits of detection ranging from 2.16 ng/L to 16.7 ng/L and with an extraction recovery ranging 55%-111%. The developed method were tested on tap water, brackish water, and wastewater influent and effluent. 6:2 FTOH and 8:2 FTOH were detected in two wastewater samples at 78.0 and 34.8 ng/L, respectively. This optimized SBSE-TD-GC-MS method will be a valuable alternative to investigate FTOHs in water matrices.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Wastewater , Fluorocarbons/analysis , Gas Chromatography-Mass Spectrometry/methods , Solvents/analysis , Water Pollutants, Chemical/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...