Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
2.
J Neurooncol ; 167(3): 477-485, 2024 May.
Article in English | MEDLINE | ID: mdl-38436894

ABSTRACT

BACKGROUND: Patient-reported outcome measures (PROMs) are increasingly used to assess patients' perioperative health. The PROM Information System 29 (PROMIS-29) is a well-validated global health assessment instrument for patient physical health, though its utility in cranial neurosurgery is unclear. OBJECTIVE: To investigate the utility of preoperative PROMIS-29 physical health (PH) summary scores in predicting postoperative outcomes in brain tumor patients. METHODS: Adult brain tumor patients undergoing resection at a single institution (January 2018-December 2021) were identified and prospectively received PROMIS-29 surveys during pre-operative visits. PH summary scores were constructed and optimum prediction thresholds for length of stay (LOS), discharge disposition (DD), and 30-day readmission were approximated by finding the Youden index of the associated receiver operating characteristic curves. Bivariate analyses were used to study the distribution of low (z-score≤-1) versus high (z-score>-1) PH scores according to baseline characteristics. Logistic regression models quantified the association between preoperative PH summary scores and post-operative outcomes. RESULTS: A total of 157 brain tumor patients were identified (mean age 55.4±15.4 years; 58.0% female; mean PH score 45.5+10.5). Outcomes included prolonged LOS (24.8%), non-routine discharge disposition (37.6%), and 30-day readmission (19.1%). On bivariate analysis, patients with low PH scores were significantly more likely to be diagnosed with a high-grade tumor (69.6% vs 38.85%, p=0.010) and less likely to have elective surgery (34.8% vs 70.9%, p=0.002). Low PH score was associated with prolonged LOS (26.1% vs 22%, p<0.001), nonroutine discharge (73.9% vs 31.3%, p<0.001) and 30-day readmission (43.5% vs 14.9%, p=0.003). In multivariate analysis, low PH scores predicted greater LOS (odds ratio [OR]=6.09, p=0.003), nonroutine discharge (OR=4.25, p=0.020), and 30-day readmission (OR=3.93, p=0.020). CONCLUSION: The PROMIS-29 PH summary score predicts short-term postoperative outcomes in brain tumor patients and may be incorporated into prospective clinical workflows.


Subject(s)
Brain Neoplasms , Patient Reported Outcome Measures , Quality of Life , Humans , Female , Male , Brain Neoplasms/surgery , Middle Aged , Length of Stay/statistics & numerical data , Neurosurgical Procedures , Prospective Studies , Aged , Adult , Patient Readmission/statistics & numerical data , Preoperative Period , Prognosis , Postoperative Complications/epidemiology , Follow-Up Studies
3.
CNS Oncol ; : CNS107, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456492

ABSTRACT

Aim: Adult medulloblastomas (MB) are rare, and optimal post-craniospinal irradiation (CSI) chemotherapy is not yet defined. We investigated hematological toxicity in patients treated with platinum-etoposide (EP) post-CSI. Methods: Retrospective, single-institution study to determine hematological toxicity in adult MB patients treated with EP (1995-2022). Results: Thirteen patients with a median follow-up of 50 months (range, 10-233) were analyzed. Four discontinued treatment due to toxicity, one after 1, 3 after 3 cycles. Hematological toxicities included grade 3 (5 patients) and grade 4 (6 patients). Two patients experienced post-treatment progression and died 16 and 37 months from diagnosis. Conclusion: Post-CSI EP demonstrates acceptable hematological toxicity in adult MB. However, the small cohort precludes definitive survival outcome conclusions. Prospective studies for comprehensive comparisons with other regimens are needed in this context.


Our study aimed to understand the effect of a chemotherapy combination (platinum and etoposide) on blood counts in adult patients with medulloblastoma after craniospinal radiation. Medulloblastoma is a rare brain cancer in adults. We analyzed data from 13 adult patients with medulloblastoma. The results show that the treatment leads to significant blood count-related side effects. Four of the patients discontinued their treatment early. Blood counts improved again after completion of treatment. Two patients had the tumor grow back after treatment and died later. Overall, the effect from this chemotherapy combination on blood counts was felt to be acceptable. The number of patients in this study was small, and more research is needed to determine the overall effectiveness of this treatment.

4.
Brain Sci ; 14(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38391701

ABSTRACT

MR perfusion imaging is important in the clinical evaluation of primary brain tumors, particularly in differentiating between true progression and treatment-induced change. The utility of velocity-selective ASL (VSASL) compared to the more commonly utilized DSC perfusion technique was assessed in routine clinical surveillance MR exams of 28 patients with high-grade gliomas at 1.5T. Using RANO criteria, patients were assigned to two groups, one with detectable residual/recurrent tumor ("RT", n = 9), and the other with no detectable residual/recurrent tumor ("NRT", n = 19). An ROI was drawn to encompass the largest dimension of the lesion with measures normalized against normal gray matter to yield rCBF and tSNR from VSASL, as well as rCBF and leakage-corrected relative CBV (lc-rCBV) from DSC. VSASL (rCBF and tSNR) and DSC (rCBF and lc-rCBV) metrics were significantly higher in the RT group than the NRT group allowing adequate discrimination (p < 0.05, Mann-Whitney test). Lin's concordance analyses showed moderate to excellent concordance between the two methods, with a stronger, moderate correlation between VSASL rCBF and DSC lc-rCBV (r = 0.57, p = 0.002; Pearson's correlation). These results suggest that VSASL is clinically feasible at 1.5T and has the potential to offer a noninvasive alternative to DSC perfusion in monitoring high-grade gliomas following therapy.

5.
Neurooncol Adv ; 5(1): vdad087, 2023.
Article in English | MEDLINE | ID: mdl-37554223

ABSTRACT

Background: Procaspase-3 (PC-3) is overexpressed in various tumor types, including gliomas. Targeted PC-3 activation combined with chemotherapy is a novel strategy for treating patients with high-grade gliomas, with promising preclinical activity. This study aimed to define safety and tolerability of procaspase-activating compound-1 (PAC-1) in combination with temozolomide (TMZ) for patients with recurrent high-grade astrocytomas. Methods: A modified-Fibonacci dose-escalation 3 + 3 design was used. PAC-1 was administered at increasing dose levels (DL; DL1 = 375 mg) on days 1-21, in combination with TMZ 150 mg/m2/5 days, per 28-day cycle. Dose-limiting toxicity was assessed during the first 2 cycles. Neurocognitive function (NCF) testing was conducted throughout the study. Results: Eighteen patients were enrolled (13 GBM, IDH-wild type; 2 astrocytoma, IDH-mutant, grade 3; 3 astrocytoma, IDH-mutant, grade 4). Dose escalation was discontinued after DL3 (ie, PAC-1, 625 mg) due to lack of additional funding. Grade 3 toxicity was observed in 1 patient at DL1 (elevated liver transaminases) and 1 at DL 2 (headache). Two partial responses were observed at DL1 in patients with GBM, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated. Two patients had stable disease, and 11 experienced progression. NCF testing did not show a clear relationship between PAC-1 dose, treatment duration, and declines in NCF. Conclusions: Combination of PAC-1 and TMZ was well tolerated up to 625 mg orally daily and TMZ orally 150 mg/m2/5 days per 28-day cycle. The maximum tolerated dose was not reached. Further dose escalation of PAC-1 in combination with TMZ is advised before conducting a formal prospective efficacy study in this patient population.

6.
Cell Rep Med ; 4(8): 101148, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37552989

ABSTRACT

It is often challenging to distinguish cancerous from non-cancerous lesions in the brain using conventional diagnostic approaches. We introduce an analytic technique called Real-CSF (repetitive element aneuploidy sequencing in CSF) to detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). Short interspersed nuclear elements (SINEs) are PCR amplified with a single primer pair, and the PCR products are evaluated by next-generation sequencing. Real-CSF assesses genome-wide copy-number alterations as well as focal amplifications of selected oncogenes. Real-CSF was applied to 280 CSF samples and correctly identified 67% of 184 cancerous and 96% of 96 non-cancerous brain lesions. CSF analysis was considerably more sensitive than standard-of-care cytology and plasma cell-free DNA analysis in the same patients. Real-CSF therefore has the capacity to be used in combination with other clinical, radiologic, and laboratory-based data to inform the diagnosis and management of patients with suspected cancers of the brain.


Subject(s)
Central Nervous System Neoplasms , Humans , Polymerase Chain Reaction/methods , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/cerebrospinal fluid , Nucleic Acid Amplification Techniques , Short Interspersed Nucleotide Elements , Central Nervous System
7.
N Engl J Med ; 389(7): 589-601, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37272516

ABSTRACT

BACKGROUND: Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS: In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS: A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS: In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).


Subject(s)
Antineoplastic Agents , Glioma , Neoplasm Recurrence, Local , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease Progression , Double-Blind Method , Glioma/drug therapy , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Neoplasm Recurrence, Local/drug therapy , Pyridines/adverse effects , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use
8.
Magn Reson Imaging ; 102: 222-228, 2023 10.
Article in English | MEDLINE | ID: mdl-37321378

ABSTRACT

New or enlarged lesions in malignant gliomas after surgery and chemoradiation can be associated with tumor recurrence or treatment effect. Due to similar radiographic characteristics, conventional-and even some advanced MRI techniques-are limited in distinguishing these two pathologies. Amide proton transfer-weighted (APTw) MRI, a protein-based molecular imaging technique that does not require the administration of any exogenous contrast agent, was recently introduced into the clinical setting. In this study, we evaluated and compared the diagnostic performances of APTw MRI with several non-contrast-enhanced MRI sequences, such as diffusion-weighted imaging, susceptibility-weighted imaging, and pseudo-continuous arterial spin labeling. Thirty-nine scans from 28 glioma patients were obtained on a 3 T MRI scanner. A histogram analysis approach was employed to extract parameters from each tumor area. Statistically significant parameters (P < 0.05) were selected to train multivariate logistic regression models to evaluate the performance of MRI sequences. Multiple histogram parameters, particularly from APTw and pseudo-continuous arterial spin labeling images, demonstrated significant differences between treatment effect and recurrent tumor. The regression model trained on the combination of all significant histogram parameters achieved the best result (area under the curve = 0.89). We found that APTw images added value to other advanced MR images for the differentiation of treatment effect and tumor recurrence.


Subject(s)
Brain Neoplasms , Glioma , Humans , Protons , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Amides , Neoplasm Recurrence, Local/diagnostic imaging , Glioma/diagnostic imaging , Glioma/therapy , Magnetic Resonance Imaging/methods
9.
Tomography ; 9(1): 362-374, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36828381

ABSTRACT

Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed a three-site study to assess survival benefits of GBM patients when treated with escalated radiation dose guided by metabolic abnormalities in sMRI. Escalated radiation led to complex post-treatment imaging, requiring unique approaches to discern tumor progression from radiation-related treatment effect through our quantitative imaging platform. The purpose of this study is to determine true tumor recurrence timepoints for patients in our dose-escalation multisite study using novel methodology and to report on median progression-free survival (PFS). Follow-up imaging for all 30 trial patients were collected, lesion volumes segmented and graphed, and imaging uploaded to our platform for visual interpretation. Eighteen months post-enrollment, the median PFS was 16.6 months with a median time to follow-up of 20.3 months. With this new treatment paradigm, incidence rate of tumor recurrence one year from treatment is 30% compared to 60-70% failure under standard care. Based on the delayed tumor progression and improved survival, a randomized phase II trial is under development (EAF211).


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Brain Neoplasms/pathology , Glioblastoma/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Neoplasm Recurrence, Local , Radiation Dosage
10.
J Natl Compr Canc Netw ; 21(1): 12-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36634606

ABSTRACT

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Adult , Humans , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Central Nervous System , Mutation
11.
Br J Cancer ; 128(5): 783-792, 2023 03.
Article in English | MEDLINE | ID: mdl-36470974

ABSTRACT

BACKGROUND: Procaspase-3 (PC-3) is overexpressed in multiple tumour types and procaspase-activating compound 1 (PAC-1) directly activates PC-3 and induces apoptosis in cancer cells. This report describes the first-in-human, phase I study of PAC-1 assessing maximum tolerated dose, safety, and pharmacokinetics. METHODS: Modified-Fibonacci dose-escalation 3 + 3 design was used. PAC-1 was administered orally at 7 dose levels (DL) on days 1-21 of a 28-day cycle. Dose-limiting toxicity (DLT) was assessed during the first two cycles of therapy, and pharmacokinetics analysis was conducted on days 1 and 21 of the first cycle. Neurologic and neurocognitive function (NNCF) tests were performed throughout the study. RESULTS: Forty-eight patients were enrolled with 33 completing ≥2 cycles of therapy and evaluable for DLT. DL 7 (750 mg/day) was established as the recommended phase 2 dose, with grade 1 and 2 neurological adverse events noted, while NNCF testing showed stable neurologic and cognitive evaluations. PAC-1's t1/2 was 28.5 h after multi-dosing, and systemic drug exposures achieved predicted therapeutic concentrations. PAC-1 clinical activity was observed in patients with neuroendocrine tumour (NET) with 2/5 patients achieving durable partial response. CONCLUSIONS: PAC-1 dose at 750 mg/day was recommended for phase 2 studies. Activity of PAC-1 in treatment-refractory NET warrants further investigation. CLINICAL TRIAL REGISTRATION: Clinical Trials.gov: NCT02355535.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Caspase 1 , Maximum Tolerated Dose , Neoplasms/drug therapy
12.
medRxiv ; 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38234840

ABSTRACT

Glioblastoma (GBM) is a primary brain cancer with an abysmal prognosis and few effective therapies. The ability to investigate the tumor microenvironment before and during treatment would greatly enhance both understanding of disease response and progression, as well as the delivery and impact of therapeutics. Stereotactic biopsies are a routine surgical procedure performed primarily for diagnostic histopathologic purposes. The role of investigative biopsies - tissue sampling for the purpose of understanding tumor microenvironmental responses to treatment using integrated multi-modal molecular analyses ('Multi-omics") has yet to be defined. Secondly, it is unknown whether comparatively small tissue samples from brain biopsies can yield sufficient information with such methods. Here we adapt stereotactic needle core biopsy tissue in two separate patients. In the first patient with recurrent GBM we performed highly resolved multi-omics analysis methods including single cell RNA sequencing, spatial-transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics from biopsy tissue that was obtained from a single procedure. In a second patient we analyzed multi-regional core biopsies to decipher spatial and genomic variance. We also investigated the utility of stereotactic biopsies as a method for generating patient derived xenograft models in a separate patient cohort. Dataset integration across modalities showed good correspondence between spatial modalities, highlighted immune cell associated metabolic pathways and revealed poor correlation between RNA expression and the tumor MHC Class I immunopeptidome. In conclusion, stereotactic needle biopsy cores are of sufficient quality to generate multi-omics data, provide data rich insight into a patient's disease process and tumor immune microenvironment and can be of value in evaluating treatment responses. One sentence summary: Integrative multi-omics analysis of stereotactic needle core biopsies in glioblastoma.

13.
Mol Ther Methods Clin Dev ; 27: 415-430, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36381305

ABSTRACT

Cord blood (CB)-derived natural killer (NK) cells that are genetically engineered to express a chimeric antigen receptor (CAR) are an attractive off-the-shelf therapy for the treatment of cancer, demonstrating a robust safety profile in vivo. For poor prognosis brain tumors such as glioblastoma multiforme (GBM), novel therapies are urgently needed. Although CAR-T cells demonstrate efficacy in preclinical GBM models, an off-the-shelf product may exhibit unwanted side effects like graft-versus-host disease. Hence, we developed an off-the-shelf CAR-NK cell approach using a B7H3 CAR and showed that CAR-transduced NK cells have robust cytolytic activity against GBM cells in vitro. However, transforming growth factor (TGF)-ß within the tumor microenvironment has devastating effects on the cytolytic activity of both unmodified and CAR-transduced NK cells. To overcome this potent immune suppression, we demonstrated that co-transducing NK cells with a B7H3 CAR and a TGF-ß dominant negative receptor (DNR) preserves cytolytic function in the presence of exogenous TGF-ß. This study demonstrates that a novel DNR and CAR co-expression strategy may be a promising therapeutic for recalcitrant CNS tumors like GBM.

14.
J Neurooncol ; 159(3): 591-596, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36001203

ABSTRACT

PURPOSE: Temozolomide (TMZ), a cytotoxic DNA alkylating agent, is the main chemotherapy used for the treatment of high grade astrocytomas. The active alkylator, methylhydrazine, is not recovered in urine and thus renal function is not expected to affect clearance. Prescribing information for TMZ states pharmacokinetics have not been studied in adults with poor renal function, eGFR < 36 mL/min/1.73 m2. We reviewed our clinical experience with TMZ in patients with impaired renal function to evaluate safety of administering full dose TMZ. METHODS: The primary endpoint was to characterize the incidence and severity of thrombocytopenia in patients with eGFR < 60 mL/min/1.73 m2 who received TMZ for treatment of high grade gliomas (HGG) or primary CNS lymphoma (PCNSL). Secondary endpoints included incidence and severity of neutropenia, lymphopenia hepatotoxicity, and number of TMZ cycles administered. Medical records of patients with HGG or PCNSL treated with TMZ from October 1, 2016-September 30, 2019 were accessed to identify cases for this study. RESULTS: Thirty-two patients were eligible for this study. Of the seven patients with eGFR < 36 mL/min/1.73m2, 38/39 cycles (97%) were completed without grade 3-4 thrombocytopenia. No patients experienced grade 3-4 neutropenia, and grade 3-4 lymphopenia occurred in 5 cycles (15%). One patient discontinued TMZ 7 days prior to completion of radiation due to thrombocytopenia. CONCLUSION: Hematologic toxicity in patients with severe renal dysfunction, eGFR < 36 mL/min/1.73m2, is similar to that of patients with normal renal function. Severe renal impairment does not preclude use of temozolomide, but cautious monitoring of blood counts is warranted.


Subject(s)
Brain Neoplasms , Glioma , Kidney Diseases , Lymphopenia , Methylhydrazines , Neutropenia , Thrombocytopenia , Adult , Antineoplastic Agents, Alkylating/adverse effects , Brain Neoplasms/pathology , Dacarbazine/adverse effects , Glioma/pathology , Humans , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Methylhydrazines/therapeutic use , Neutropenia/chemically induced , Neutropenia/drug therapy , Temozolomide/adverse effects
15.
Front Oncol ; 12: 934426, 2022.
Article in English | MEDLINE | ID: mdl-35957904

ABSTRACT

Oligodendrogliomas are a subtype of adult diffuse glioma characterized by their better responsiveness to systemic chemotherapy than other high-grade glial tumors. The World Health Organization (WHO) 2021 brain tumor classification highlighted defining molecular markers, including 1p19q codeletion and IDH mutations which have become key in diagnosing and treating oligodendrogliomas. The management for patients with oligodendrogliomas includes observation or surgical resection potentially followed by radiation and chemotherapy with PCV (Procarbazine, Lomustine, and Vincristine) or Temozolomide. However, most of the available research about oligodendrogliomas includes a mix of histologically and molecularly diagnosed tumors. Even data driving our current management guidelines are based on post-hoc subgroup analyses of the 1p19q codeleted population in landmark prospective trials. Therefore, the optimal treatment paradigm for molecularly defined oligodendrogliomas is incompletely understood. Many questions remain open, such as the optimal timing of radiation and chemotherapy, the response to different chemotherapeutic agents, or what genetic factors influence responsiveness to these agents. Ultimately, oligodendrogliomas are still incurable and new therapies, such as targeting IDH mutations, are necessary. In this opinion piece, we present relevant literature in the field, discuss current challenges, and propose some studies that we think are necessary to answer these critical questions.

16.
Neurooncol Adv ; 4(1): vdac006, 2022.
Article in English | MEDLINE | ID: mdl-35382436

ABSTRACT

Background: Glioblastomas (GBMs) are aggressive brain tumors despite radiation therapy (RT) to 60 Gy and temozolomide (TMZ). Spectroscopic magnetic resonance imaging (sMRI), which measures levels of specific brain metabolites, can delineate regions at high risk for GBM recurrence not visualized on contrast-enhanced (CE) MRI. We conducted a clinical trial to assess the feasibility, safety, and efficacy of sMRI-guided RT dose escalation to 75 Gy for newly diagnosed GBMs. Methods: Our pilot trial (NCT03137888) enrolled patients at 3 institutions (Emory University, University of Miami, Johns Hopkins University) from September 2017 to June 2019. For RT, standard tumor volumes based on T2-FLAIR and T1w-CE MRIs with margins were treated in 30 fractions to 50.1 and 60 Gy, respectively. An additional high-risk volume based on residual CE tumor and Cho/NAA (on sMRI) ≥2× normal was treated to 75 Gy. Survival curves were generated by the Kaplan-Meier method. Toxicities were assessed according to CTCAE v4.0. Results: Thirty patients were treated in the study. The median age was 59 years. 30% were MGMT promoter hypermethylated; 7% harbored IDH1 mutation. With a median follow-up of 21.4 months for censored patients, median overall survival (OS) and progression-free survival were 23.0 and 16.6 months, respectively. This regimen appeared well-tolerated with 70% of grade 3 or greater toxicity ascribed to TMZ and 23% occurring at least 1 year after RT. Conclusion: Dose-escalated RT to 75 Gy guided by sMRI appears feasible and safe for patients with newly diagnosed GBMs. OS outcome is promising and warrants additional testing. Based on these results, a randomized phase II trial is in development.

18.
Tomography ; 8(2): 688-700, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35314634

ABSTRACT

Glioblastoma (GBM) is highly aggressive and has a poor prognosis. Belinostat is a histone deacetylase inhibitor with blood-brain barrier permeability, anti-GBM activity, and the potential to enhance chemoradiation. The purpose of this clinical trial was to assess the efficacy of combining belinostat with standard-of-care therapy. Thirteen patients were enrolled in each of control and belinostat cohorts. The belinostat cohort was given a belinostat regimen (500-750 mg/m2 1×/day × 5 days) every three weeks (weeks 0, 3, and 6 of RT). All patients received temozolomide and radiation therapy (RT). RT margins of 5-10 mm were added to generate clinical tumor volumes and 3 mm added to create planning target volumes. Median overall survival (OS) was 15.8 months for the control cohort and 18.5 months for the belinostat cohort (p = 0.53). The recurrence volumes (rGTVs) for the control cohort occurred in areas that received higher radiation doses than that in the belinostat cohort. For those belinostat patients who experienced out-of-field recurrence, tumors were detectable by spectroscopic MRI before RT. Recurrence analysis suggests better in-field control with belinostat. This study highlights the potential of belinostat as a synergistic therapeutic agent for GBM. It may be particularly beneficial to combine this radio-sensitizing effect with spectroscopic MRI-guided RT.


Subject(s)
Glioblastoma , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Humans , Hydroxamic Acids/therapeutic use , Neoplasm Recurrence, Local/diagnostic imaging , Pilot Projects , Sulfonamides
19.
Case Rep Oncol ; 15(3): 909-917, 2022.
Article in English | MEDLINE | ID: mdl-36825105

ABSTRACT

Recent advancements in understanding the biology of glioblastomas (GBM) and increasing adoption of genomic sequencing in oncology practice have led to the discovery of several targetable mutations in these cancers. Among them, the BRAF V600E mutation can be found in approximately 3% of GBM. Despite the aggressive nature of GBM, metastatic disease is rarely observed. While there are growing data utilizing BRAF-targeting strategies in patients with GBM, data examining their efficacy in cases of metastatic GBM are lacking. We present the case of a 46-year-old female with GBM, isocitrate dehydrogenase (IDH)-wildtype and O6-methylguanine-DNA methyltransferase promoter (MGMT) unmethylated, BRAF V600E-mutant, and MYC amplified with extra-central nervous system spread to the spine and lung. Four months after completion of treatment with standard chemoradiation and temozolomide, the patient developed severe back pain, leading to the eventual discovery of her metastatic disease. Based on the presence of the BRAF V600E mutation, the patient was treated with and achieved an intracranial and systemic response to combination BRAF-MEK targeted inhibition for 9 months before evidence of progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...