Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
Bioorg Chem ; 131: 106331, 2023 02.
Article in English | MEDLINE | ID: mdl-36587505

ABSTRACT

In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.


Subject(s)
Amidohydrolases , Anti-Bacterial Agents , Enzyme Inhibitors , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Molecular Docking Simulation , Structure-Activity Relationship
3.
Bioorg Chem ; 117: 105403, 2021 12.
Article in English | MEDLINE | ID: mdl-34758434

ABSTRACT

The bacterial deacetylase LpxC is a promising target for the development of novel antibiotics being selectively active against Gram-negative bacteria. In chiral pool syntheses starting from d- and l-ribose, a series regio- and stereoisomeric monohydroxytetrahydrofuran derivatives was synthesized and tested for LpxC inhibitory and antibacterial activities. Molecular docking studies were performed to rationalize the obtained structure-activity relationships. The (2S,3R,5R)-configured 3-hydroxytetrahydrofuran derivative ent-8 ((2S,3R,5R)-N,3-Dihydroxy-5-(4-{[4-(morpholinomethyl)phenyl]ethynyl}phenyl)tetrahydrofuran-2-carboxamide) was found to be the most potent LpxC inhibitor (Ki = 3.5 µM) of the synthesized series of monohydroxytetrahydrofuran derivatives and to exhibit the highest antibacterial activity against E. coli BL21(DE3) and the D22 strain.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Amidohydrolases/drug effects , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Infections/drug therapy , Glycosides/chemical synthesis , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Gram-Negative Bacterial Infections/drug therapy , Humans , Molecular Docking Simulation
4.
Top Curr Chem (Cham) ; 379(5): 34, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34373963

ABSTRACT

The five-membered pyrrolidine ring is one of the nitrogen heterocycles used widely by medicinal chemists to obtain compounds for the treatment of human diseases. The great interest in this saturated scaffold is enhanced by (1) the possibility to efficiently explore the pharmacophore space due to sp3-hybridization, (2) the contribution to the stereochemistry of the molecule, (3) and the increased three-dimensional (3D) coverage due to the non-planarity of the ring-a phenomenon called "pseudorotation". In this review, we report bioactive molecules with target selectivity characterized by the pyrrolidine ring and its derivatives, including pyrrolizines, pyrrolidine-2-one, pyrrolidine-2,5-diones and prolinol described in the literature from 2015 to date. After a comparison of the physicochemical parameters of pyrrolidine with the parent aromatic pyrrole and cyclopentane, we investigate the influence of steric factors on biological activity, also describing the structure-activity relationship (SAR) of the studied compounds. To aid the reader's approach to reading the manuscript, we have planned the review on the basis of the synthetic strategies used: (1) ring construction from different cyclic or acyclic precursors, reporting the synthesis and the reaction conditions, or (2) functionalization of preformed pyrrolidine rings, e.g., proline derivatives. Since one of the most significant features of the pyrrolidine ring is the stereogenicity of carbons, we highlight how the different stereoisomers and the spatial orientation of substituents can lead to a different biological profile of drug candidates, due to the different binding mode to enantioselective proteins. We believe that this work can guide medicinal chemists to the best approach in the design of new pyrrolidine compounds with different biological profiles.


Subject(s)
Drug Discovery , Pyrrolidines/chemistry , Humans , Molecular Structure , Pyrrolidines/chemical synthesis , Stereoisomerism
5.
Bioorg Chem ; 107: 104603, 2021 02.
Article in English | MEDLINE | ID: mdl-33429229

ABSTRACT

LpxC inhibitors represent a promising class of novel antibiotics selectively combating Gram-negative bacteria. In chiral pool syntheses starting from D- and L-xylose, a series of four 2r,3c,4t-configured C-furanosidic LpxC inhibitors was obtained. The synthesized hydroxamic acids were tested for antibacterial and LpxC inhibitory activity, the acquired biological data were compared with those of previously synthesized C-furanosides, and molecular docking studies were performed to rationalize the observed structure-activity relationships. Additionally, bacterial uptake and susceptibility to efflux pump systems were investigated for the most promising stereoisomers.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Xylose/pharmacology , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Xylose/chemical synthesis , Xylose/chemistry
6.
Eur J Med Chem ; 208: 112783, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32916311

ABSTRACT

The discovery of novel synthetic compounds with drug-like properties is an ongoing challenge in medicinal chemistry. Natural products have inspired the synthesis of compounds for pharmaceutical application, most of which are based on N-heterocyclic motifs. Among these, the pyrrole ring is one of the most explored heterocycles in drug discovery programs for several therapeutic areas, confirmed by the high number of pyrrole-based drugs reaching the market. In the present review, we focused on pyrrole and its hetero-fused derivatives with anticancer, antimicrobial, and antiviral activities, reported in the literature between 2015 and 2019, for which a specific target was identified, being responsible for their biological activity. It emerges that the powerful pharmaceutical and pharmacological features provided by the pyrrole nucleus as pharmacophore unit of many drugs are still recognized by medicinal chemists.


Subject(s)
Molecular Targeted Therapy , Pyrroles/chemistry , Pyrroles/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Design , Humans
7.
Bioorg Med Chem ; 28(13): 115529, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32386952

ABSTRACT

The bacterial deacetylase LpxC is a promising target for the development of antibiotics selectively combating Gram-negative bacteria. To improve the biological activity of the reported benzyloxyacetohydroxamic acid 9 ((S)-N-hydroxy-2-{2-hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy}acetamide), its hydroxy group was replaced by a triazole ring. Therefore, in divergent syntheses, triazole derivatives exhibiting rigid and flexible lipophilic side chains, different configurations at their stereocenter, and various substitution patterns at the triazole ring were synthesized, tested for antibacterial and LpxC inhibitory activity, and structure-activity relationships were deduced based on docking and binding energy calculations.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Hydroxamic Acids/chemical synthesis , Triazoles/chemistry , Anti-Bacterial Agents/pharmacology , Cycloaddition Reaction , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Humans , Hydroxamic Acids/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
8.
ChemMedChem ; 15(7): 571-584, 2020 04 03.
Article in English | MEDLINE | ID: mdl-31816172

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, which affects over 200 million people worldwide and leads to at least 300,000 deaths every year. In this study, initial screening revealed the triazole-based hydroxamate 2 b (N-hydroxy-1-phenyl-1H-1,2,3-triazole-4-carboxamide) exhibiting potent inhibitory activity toward the novel antiparasitic target Schistosoma mansoni histone deacetylase 8 (smHDAC8) and promising selectivity over the major human HDACs. Subsequent crystallographic studies of the 2 b/smHDAC8 complex revealed key interactions between the inhibitor and the enzyme's active site, thus explaining the unique selectivity profile of the inhibitor. Further chemical modifications of 2 b led to the discovery of 4-fluorophenoxy derivative 21 (1-[5-chloro-2-(4-fluorophenoxy)phenyl]-N-hydroxy-1H-1,2,3-triazole-4-carboxamide), a nanomolar smHDAC8 inhibitor (IC50 =0.5 µM), exceeding the smHDAC8 inhibitory activity of 2 b and SAHA (vorinostat), while exhibiting an improved selectivity profile over the investigated human HDACs. Collectively, this study reveals specific interactions between smHDAC8 and the synthesized triazole-based inhibitors and demonstrates that these small molecules represent promising lead structures, which could be further developed in the search for novel drugs for the treatment of schistosomiasis.


Subject(s)
Drug Design , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Schistosoma mansoni/enzymology , Schistosomiasis/drug therapy , Triazoles/pharmacology , Animals , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Schistosomiasis/metabolism , Triazoles/chemical synthesis , Triazoles/chemistry
9.
Bioorg Med Chem ; 27(10): 1997-2018, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30954331

ABSTRACT

The Zn2+-dependent deacetylase LpxC is an essential enzyme in Gram-negative bacteria, which has been validated as antibacterial drug target. Herein we report the chiral-pool synthesis of novel d- and l-proline-derived 3,4-dihydroxypyrrolidine hydroxamates and compare their antibacterial and LpxC inhibitory activities with the ones of 4-monosubstituted and 3,4-unsubstituted proline derivatives. With potent antibacterial activities against several Gram-negative pathogens, the l-proline-based tertiary amine 41g ((S)-N-hydroxy-1-(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)pyrrolidine-2-carboxamide) was found to be the most active antibacterial compound within the investigated series, also showing some selectivity toward EcLpxC (Ki = 1.4 µM) over several human MMPs.


Subject(s)
Amidohydrolases/metabolism , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/metabolism , Hydroxamic Acids/chemistry , Proline/chemistry , Amidohydrolases/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Binding Sites , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Proline/metabolism , Structure-Activity Relationship , Zinc/chemistry
10.
ChemMedChem ; 14(8): 871-886, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30801965

ABSTRACT

Inhibitors of the bacterial deacetylase LpxC are a promising class of novel antibiotics, being selectively active against Gram-negative bacteria. To improve the biological activity of reported C-furanosidic LpxC inhibitors, the stereochemistry at positions 3 and 4 of the tetrahydrofuran ring was varied. In chiral pool syntheses starting from d-gulono-γ-lactone and d-ribose, a series of (3S,4R)-configured dihydroxytetrahydrofuran derivatives was obtained, of which the (2S,5S)-configured hydroxamic acid 15 ((2S,3S,4R,5S)-N,3,4-trihydroxy-5-(4-{[4-(morpholinomethyl)phenyl]ethynyl}phenyl)tetrahydrofuran-2-carboxamide) was found to be the most potent LpxC inhibitor (Ki =0.4 µm), exhibiting the highest antibacterial activity against E. coli BL21 (DE3) and the D22 strain. Additionally, molecular docking studies were performed to rationalize the obtained structure-activity relationships.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Furans/chemistry , Molecular Docking Simulation , Amidohydrolases/metabolism , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , Furans/metabolism , Furans/pharmacology , Hydroxamic Acids/chemistry , Microbial Sensitivity Tests , Stereoisomerism , Structure-Activity Relationship
11.
J Med Chem ; 61(22): 10000-10016, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30347148

ABSTRACT

Metal-dependent histone deacetylases (HDACs) are key epigenetic regulators that represent promising therapeutic targets for the treatment of numerous human diseases. Yet the currently FDA-approved HDAC inhibitors nonspecifically target at least several of the 11 structurally similar but functionally different HDAC isozymes, which hampers their broad usage in clinical settings. Selective inhibitors targeting single HDAC isozymes are being developed, but precise understanding in molecular terms of their selectivity remains sparse. Here, we show that HDAC8-selective inhibitors adopt a L-shaped conformation required for their binding to a HDAC8-specific pocket formed by HDAC8 catalytic tyrosine and HDAC8 L1 and L6 loops. In other HDAC isozymes, a L1-L6 lock sterically prevents L-shaped inhibitor binding. Shielding of the HDAC8-specific pocket by protein engineering decreases potency of HDAC8-selective inhibitors and affects catalytic activity. Collectively, our results unravel key HDAC8 active site structural and functional determinants important for the design of next-generation chemical probes and epigenetic drugs.


Subject(s)
Catalytic Domain , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/chemistry , Amino Acid Sequence , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacology , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Molecular Dynamics Simulation , Repressor Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
12.
Expert Opin Ther Pat ; 27(11): 1227-1250, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28742403

ABSTRACT

INTRODUCTION: The Zn2+-dependent deacetylase LpxC is an essential enzyme of lipid A biosynthesis in Gram-negative bacteria and a promising target for the development of antibiotics selectively combating Gram-negative pathogens. Researchers from industry and academia have synthesized structurally diverse LpxC inhibitors, exhibiting different LpxC inhibitory and antibacterial activities. Areas covered: A brief introduction into the structure and function of LpxC, showing its suitability as antibacterial target, along with the structures of several reported LpxC inhibitors, is given. The article reviews patents (reported between 2010 and 2016) and related research publications on novel small-molecule LpxC inhibitors. Emphasis is placed on structure-activity relationships within the reported series of LpxC inhibitors. Expert opinion: The performed analysis of patents revealed that the current search for novel LpxC inhibitors is focused on small molecules, sharing common structural features like a Zn2+-chelating group as well as a highly lipophilic side-chain. However, despite the promising preclinical data of many of the reported compounds, besides the recently withdrawn clinical candidate ACHN-975, no other LpxC inhibitor has entered clinical trials. The lack of clinical candidates might be related with undesired effects caused by the common structural elements of the LpxC inhibitors.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Drug Design , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Gram-Negative Bacterial Infections/enzymology , Humans , Patents as Topic , Structure-Activity Relationship
13.
J Med Chem ; 59(20): 9541-9559, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27696839

ABSTRACT

As dysregulation of matrix metalloproteinase (MMP) activity is associated with a wide range of pathophysiological processes like cancer, atherosclerosis, and arthritis, MMPs represent a valuable target for the development of new therapeutics and diagnostic tools. We herein present the chiral pool syntheses, in vitro evaluation, and SAR studies of a series of d- and l-proline- as well as of (4R)-4-hydroxy-l-proline-derived MMP inhibitors possessing general formula 1. Some of the synthesized hydroxamic acids were found to be potent MMP inhibitors with IC50 values in the nanomolar range, also demonstrating no off-target effects toward the other tested Zn2+-dependent metalloproteases (ADAMs and meprins). Utilizing the structure of the (2S,4S)-configured 4-hydroxyproline derivative 4, a selective picomolar inhibitor of MMP-13, the radiolabeled counterpart [18F]4 was successfully synthesized. The radiotracer's biodistribution in mice as well as its serum stability were evaluated for assessing its potential use as a MMP-13 targeting PET imaging agent.


Subject(s)
Drug Design , Metalloproteases/antagonists & inhibitors , Positron-Emission Tomography/methods , Proline/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Humans , Metalloproteases/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Proline/chemical synthesis , Proline/chemistry , Protease Inhibitors/chemical synthesis , Radioactive Tracers , Structure-Activity Relationship
14.
Curr Top Med Chem ; 16(21): 2379-430, 2016.
Article in English | MEDLINE | ID: mdl-27072691

ABSTRACT

The bacterial enzyme UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), catalyzing the first committed step of lipid A biosynthesis, represents a promising target in the development of novel antibiotics against Gram-negative bacteria. Structure, catalytic reaction mechanism and regulation of the Zn2+-dependent metalloamidase have been intensively investigated. The enzyme is required for growth and viability of Gram-negative bacteria, displays no sequence homology with any mammalian protein, but is highly conserved in Gram-negative bacteria, thus permitting the development of Gram-negative selective antibacterial agents with limited off-target effects. Several smallmolecule LpxC inhibitors have been developed, like the substrate analog TU-514 (12a), the aryloxazoline L-161,240 (13w), the sulfonamide BB-78485 (23a), the N-aroyl-L-threonine derivative CHIR-090 (24a), the sulfone-containing pyridone LpxC-3 (43e), and the uridine-based inhibitor 1-68A (47a), displaying diverse inhibitory and antibacterial activities. Most of these compounds share a Zn2+-binding hydroxamate moiety attached to a structural element addressing the hydrophobic tunnel or the UDP binding site. The butadiynyl derivative ACHN-975 (28) is the first LpxC inhibitor entering clinical trials.


Subject(s)
Amidohydrolases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Zinc/metabolism , Amidohydrolases/pharmacology , Amino Acid Sequence , Catalysis , Sequence Homology, Amino Acid
15.
Bioorg Med Chem ; 24(5): 1032-44, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26827141

ABSTRACT

Inhibitors of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represent a promising class of novel antibiotics, selectively combating Gram-negative bacteria. In order to elucidate the impact of the hydroxymethyl groups of diol (S,S)-4 on the inhibitory activity against LpxC, glyceric acid ethers (R)-7a, (S)-7a, (R)-7b, and (S)-7b, lacking the hydroxymethyl group in benzylic position, were synthesized. The compounds were obtained in enantiomerically pure form by a chiral pool synthesis and a lipase-catalyzed enantioselective desymmetrization, respectively. The enantiomeric hydroxamic acids (R)-7b (Ki=230nM) and (S)-7b (Ki=390nM) show promising enzyme inhibition. However, their inhibitory activities do not substantially differ from each other leading to a low eudismic ratio. Generally, the synthesized glyceric acid derivatives 7 show antibacterial activities against two Escherichia coli strains exceeding the ones of their respective regioisomes 6.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Glyceric Acids/chemistry , Glyceric Acids/pharmacology , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Escherichia coli Infections/microbiology , Glyceric Acids/chemical synthesis , Humans , Stereoisomerism , Structure-Activity Relationship
16.
Eur J Med Chem ; 110: 340-75, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26866455

ABSTRACT

Inhibitors of the bacterial deacetylase LpxC have emerged as a promising new class of Gram-negative selective antibacterials. In order to find novel LpxC inhibitors, in chiral-pool syntheses starting from d-mannose, C-furanosides with altered configuration in positions 2 and/or 5 of the tetrahydrofuran ring were prepared in stereochemically pure form. Additionally, the substitution pattern in positions 3 and 4 of the tetrahydrofuran ring as well as the structure of the lipophilic side chain in position 2 were varied. Finally, all stereoisomers of the respective open chain diols were obtained via glycol cleavages of properly protected C-glycosides. The biological evaluation of the synthesized hydroxamic acids revealed that in case of the C-glycosides, 2,5-trans-configuration generally leads to superior inhibitory and antibacterial activities. The relief of the conformational strain leading to the respective open chain derivatives generally caused an increase in the inhibitory and antibacterial activities of the benzyloxyacetohydroxamic acids. With Ki-values of 0.35 µm and 0.23 µm, the (S,S)-configured open-chain derivatives 8b and 8c were found to be the most potent LpxC inhibitors of these series of compounds.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/enzymology , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Amidohydrolases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Glycosides/chemistry , Glycosides/pharmacology , Humans , Mannose/analogs & derivatives , Mannose/pharmacology , Microbial Sensitivity Tests , Stereoisomerism , Structure-Activity Relationship
17.
Bioorg Med Chem ; 22(3): 1016-28, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24412340

ABSTRACT

The inhibition of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represents a promising strategy to combat infections caused by multidrug-resistant Gram-negative bacteria. In order to elucidate the functional groups being important for the inhibition of LpxC, the structure of our previously reported hydroxamic acid 4 should be systematically varied. Therefore, a series of benzyloxyacetohydroxamic acids was prepared, of which the diphenylacetylene derivatives 28 (Ki=95nM) and 21 (Ki=66nM) were the most potent inhibitors of Escherichia coli LpxC. These compounds could be synthesized in a stereoselective manner employing a Sharpless asymmetric dihydroxylation and a Sonogashira coupling in the key steps. The obtained structure-activity relationships could be rationalized by molecular docking studies.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Chemistry Techniques, Synthetic , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemical synthesis , Ethylene Glycols/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
18.
Org Biomol Chem ; 11(36): 6056-70, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23917427

ABSTRACT

Inhibitors of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represent promising candidates for the development of antibiotics possessing a so far unexploited mechanism of action. In a chiral pool synthesis, starting from the D-mannose derived mannonolactone 4, conformationally constrained C-glycosidic as well as open chained hydroxamic acids with a defined stereochemistry were prepared. Diversity was introduced by performing C­C coupling reactions like the Sonogashira and Suzuki cross-coupling reactions. The biological evaluation of the synthesized compounds revealed that in the case of the C-glycosides a long, linear and rigid hydrophobic side chain is required for antibiotic activity against E. coli. The open chain derivatives show higher biological activity than the conformationally constrained C-glycosides. The morpholinomethyl substituted open chain derivative 43, being the most potent compound presented in this paper, inhibits LpxC with a Ki value of 0.35 µM and represents a promising lead structure.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Glycosides/pharmacology , Hydroxamic Acids/pharmacology , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Glycosides/chemical synthesis , Glycosides/chemistry , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Structure-Activity Relationship
19.
Carbohydr Res ; 361: 162-9, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23026710

ABSTRACT

In a chiral-pool synthesis starting from D-mannono-1,4-lactone 1a, the four diastereomeric C-aryl furanosides (1S,4R)-4a, (1S,4S)-4b, (1R,4R)-4c, and (1R,4S)-4d were obtained in a stereocontrolled manner. The key steps of the synthetic pathway comprise a stereoselective reduction of the diastereomeric hemiketals (4R)-2a and (4S)-2b as well as a stereospecific cycloetherification of the resulting diols (1R,4R)-5a, (1S,4R)-5c, and (1S,4S)-5d. This ring closure which led to the desired C-glycosides was achieved by a Mitsunobu reaction or by preparing the 1-O-benzoyl-4-O-methylsulfonyl derivative 7 which was then treated with sodium methoxide. Final hydrolysis of the 5,6-O-isopropylidene protecting group led to the diastereomeric diols (1S,4R)-4a, (1S,4S)-4b, (1R,4R)-4c, and (1R,4S)-4d, representing versatile building blocks for further synthetic transformations.


Subject(s)
Fructans/chemical synthesis , Fructans/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism
20.
Carbohydr Res ; 359: 59-64, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22925765

ABSTRACT

The UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) is a promising target for the development of novel antibiotic substances against multidrug-resistant Gram-negative bacteria. The C-aryl glycoside 3 was designed as conformationally constrained analogue of the potent LpxC-inhibitor CHIR-090. The chiral pool synthesis of 3 started with D-mannose. The C-aryl glycoside 8 was synthesized stereoselectively by nucleophilic attack of 4-iodine-substituted phenyllithium and subsequent reduction with Et(3)SiH. The ester 10 was obtained in a one-pot diol cleavage, CrO(3) oxidation, and esterification. A Sonogashira reaction of the aryl iodide 11 led to the alkyne 17 which was transformed with H(2)NOH into the hydroxamic acid 3.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Glycosides/chemistry , Glycosides/chemical synthesis , Hydroxamic Acids/chemistry , Threonine/analogs & derivatives , Amidohydrolases/antagonists & inhibitors , Carbohydrate Conformation , Chemistry Techniques, Synthetic , Enzyme Inhibitors/pharmacology , Glycosides/pharmacology , Stereoisomerism , Substrate Specificity , Threonine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...