Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
2.
Environ Sci Technol ; 58(18): 7710-7718, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656189

ABSTRACT

When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level. We highlight herein that as a result, TPs deserve more attention in research, chemicals regulation, and chemicals management. This perspective summarizes the main challenges preventing a better integration of TPs in these areas: (1) the lack of reliable high-throughput TP identification methods, (2) uncertainties in TP prediction, (3) inadequately considered TP formation during (advanced) water treatment, and (4) insufficient integration and harmonization of TPs in most regulatory frameworks. A way forward to tackle these challenges and integrate TPs into chemical management is proposed.


Subject(s)
Environmental Pollutants , Risk Assessment
3.
Sci Total Environ ; 925: 171769, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38499104

ABSTRACT

Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformation processes represent key physiological responses that facilitate detoxification and reduce the bioaccumulation potential of chemicals. Biotransformation does not only depend on the ability of different organs to display biotransformation enzymes but also on the affinity of chemicals towards these enzymes. In the present study, we explored the ability of different organs and of two freshwater fish to support biotransformation processes through the determination of in vitro phase I and II biotransformation enzyme activity, and their role in supporting intrinsic clearance and the formation of biotransformation products. Three environmentally relevant pollutants were evaluated: the polycyclic aromatic hydrocarbon (PAH) pyrene (as recommended by the OECD 319b test guideline), the fungicide azoxystrobin, and the pharmaceutical propranolol. Comparative studies using S9 sub-cellular fractions derived from the liver, intestine, gills, and brain of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) revealed significant phase I and II enzyme activity in all organs. However, organ- and species-specific differences were found. In brown trout, significant extrahepatic biotransformation was observed for pyrene but not for azoxystrobin and propranolol. In rainbow trout, the brain appeared to biotransform azoxystrobin. In this same species, propranolol appeared to be biotransformed by the intestine and gills. Biotransformation products could be detected only from hepatic biotransformation, and their profiles and formation rates displayed species-specific patterns and occurred at different magnitudes. Altogether, our findings further contribute to the current understanding of organ-specific biotransformation capacity, beyond the expression and activity of enzymes, and its dependence on specific enzyme-chemical interactions to support mechanisms of defense against exposure.


Subject(s)
Ecosystem , Oncorhynchus mykiss , Pyrimidines , Strobilurins , Animals , Propranolol , Liver/metabolism , Oncorhynchus mykiss/metabolism , Pyrenes/metabolism , Biotransformation
4.
Environ Int ; 186: 108585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521044

ABSTRACT

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Subject(s)
Environmental Exposure , Environmental Monitoring , Humans , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Monitoring/standards , Environmental Pollutants/analysis , Hazardous Substances/analysis , Mass Spectrometry/methods , Risk Assessment/methods
5.
Environ Int ; 183: 108403, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224651

ABSTRACT

Environmental risk assessment of chemical contaminants requires prioritizing of substances taken up by biota as it is a starting point for potential adverse effects. Although knowledge about the occurrence of known chemical pollutants in aquatic organisms has significantly improved during the last decade, there is still a poor understanding for a broad range of more polar compounds. To tackle this issue, we proposed an approach that identifies bioaccumulative and biomagnifiable polar chemicals using liquid chromatography coupled with electrospray ionization to high resolution tandem mass spectrometry (LC-HRMS/MS) and combine it with trend analysis using hierarchical clustering. As a proof-of-concept, this approach was implemented on various organisms and compartments (sediment, litter leaves, periphytic biofilm, invertebrates and fish) collected from a small urban river. HRMS/MS data measured via data-independent acquisition mode were retrospectively analysed using two analytical strategies: (1) retrospective target and (2) suspect/non-target screening. In the retrospective target analysis, 56 of 361 substances spanning a broad range of contaminant classes were detected (i.e. 26 in fish, 18 in macroinvertebrates, 28 in leaves, 29 in periphyton and 32 in sediments, with only 7 common to all compartments), among which 49 could be quantified using reference standards. The suspect screening approach based on two suspect lists (in-house, Norman SusDat) led to the confirmation of 5 compounds with standards (three xenobiotics at level 1 and two lipids at level 2) and tentative identification of seven industrial or natural chemicals at level 2 and 3 through a mass spectra library match. Overall, this proof-of-concept study provided a more comprehensive picture of the exposure of biota to emerging contaminants (i.e., the internal chemical exposome) and potential bioaccumulation or biomagnification of polar compounds along the trophic chain.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Retrospective Studies , Environmental Monitoring/methods , Tandem Mass Spectrometry , Organic Chemicals/analysis , Chromatography, Liquid , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 58(3): 1452-1461, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38214086

ABSTRACT

Cationic surfactants are used in many industrial processes and in consumer products with concurrent release into the aquatic environment, where they may accumulate in aquatic organisms to regulatoryly relevant thresholds. Here, we aimed to better understand the bioconcentration behavior of three selected cationic surfactants, namely N,N-dimethyldecylamine (T10), N-methyldodecylamine (S12), and N,N,N-trimethyltetradecylammonium cation (Q14), in the cells of fish liver (RTL-W1) and gill (RTgill-W1) cell lines. We conducted full mass balances for bioconcentration tests with the cell cultures, in which the medium, the cell surface, the cells themselves, and the plastic compartment were sampled and quantified for each surfactant by HPLC MS/MS. Accumulation in/to cells correlated with the surfactants' alkyl chain lengths and their membrane lipid-water partitioning coefficient, DMLW. Cell-derived bioconcentration factors (BCF) of T10 and S12 were within a factor of 3.5 to in vivo BCF obtained from the literature, while the cell-derived BCF values for Q14 were >100 times higher than the in vivo BCF. From our experiments, rainbow trout cell lines appear as a suitable conservative in vitro screening method for bioconcentration assessment of cationic surfactants and are promising for further testing.


Subject(s)
Oncorhynchus mykiss , Water Pollutants, Chemical , Animals , Bioaccumulation , Tandem Mass Spectrometry , Surface-Active Agents/metabolism , Oncorhynchus mykiss/metabolism , Cell Line , Water Pollutants, Chemical/metabolism
7.
Environ Int ; 181: 108288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918065

ABSTRACT

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Subject(s)
Environmental Monitoring , Fishes , Animals , Humans , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Mass Spectrometry/methods
8.
J Environ Manage ; 347: 119001, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37812901

ABSTRACT

Wastewater treatment plants (WWTPs) are a major source of micropollutants to surface waters. Currently, their chemical or biological monitoring is realized by using grab or composite samples, which provides only snapshots of the current wastewater composition. Especially in WWTPs with industrial input, the wastewater composition can be highly variable and a continuous assessment would be advantageous, but very labor and cost intensive. A promising concept are automated real-time biological early warning systems (BEWS), where living organisms are constantly exposed to the water and an alarm is triggered if the organism's responses exceed a harmful threshold of acute toxicity. Currently, BEWS are established for drinking water and surface water but are seldom applied to monitor wastewater. This study demonstrates that a battery of BEWS using algae (Chlorella vulgaris in the Algae Toximeter, bbe Moldaenke), water flea (Daphnia magna in the DaphTox II, bbe Moldaenke) and gammarids (Gammarus pulex in the Sensaguard, REMONDIS Aqua) can be adapted for wastewater surveillance. For continuous low-maintenance operation, a back-washable membrane filtration system is indispensable for adequate preparation of treated wastewater. Only minor deviations in the reaction of the organisms towards treated and filtered wastewater compared to surface waters were detected. After spiking treated wastewater with two concentrations of the model compounds diuron, chlorpyrifos methyl, and sertraline, the organisms in the different BEWS showed clear responses depending on the respective compound, concentration and mode of action. Immediate effects on photosynthetic activity of algae were detected for diuron exposure, and strong behavioral changes in water flea and gammarids after exposure to chlorpyrifos methyl or sertraline were observed, which triggered automated alarms. Different types of data analysis were applied to extract more information out of the specific behavioral traits, than only provided by the vendors algorithms. To investigate, whether behavioral movement changes can be linked to impact other endpoints, the effects on feeding activity of G. pulex were evaluated and results indicated significant differences between the exposures. Overall, these findings provide an important basis indicating that BEWS have the potential to act as alarm systems for pollution events in the wastewater sector.


Subject(s)
Chlorella vulgaris , Chlorpyrifos , Water Pollutants, Chemical , Water Purification , Wastewater , Water Pollutants, Chemical/chemistry , Diuron , Sertraline/analysis , Wastewater-Based Epidemiological Monitoring , Environmental Monitoring/methods
9.
Ecotoxicol Environ Saf ; 264: 115468, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37738825

ABSTRACT

The application of mass spectrometry imaging (MSI) is a promising tool to analyze the spatial distribution of organic contaminants in organisms and thereby improve the understanding of toxicokinetic and toxicodynamic processes. MSI is a common method in medical research but has been rarely applied in environmental science. In the present study, the suitability of MSI to assess the spatial distribution of organic contaminants and their biotransformation products (BTPs) in the aquatic invertebrate key species Gammarus pulex was studied. Gammarids were exposed to a mixture of common organic contaminants (carbamazepine, citalopram, cyprodinil, efavirenz, fluopyram and terbutryn). The distribution of the parent compounds and their BTPs in the organisms was analyzed by two MSI methods (MALDI- and DESI-HRMSI) after cryo-sectioning, and by LC-HRMS/MS after dissection into different organ compartments. The spatial distribution of contaminats in gammarid tissue could be successfully analyzed by the different analytical methods. The intestinal system was identified as the main site of biotransformation, possibly due to the presence of biotransforming enzymes. LC-HRMS/MS was more sensitive and provided higher confidence in BTP identification due to chromatographic separation and MS/MS. DESI was found to be the more sensitive MSI method for the analyzed contaminants, whereas additional biomarkers were found using MALDI. The results demonstrate the suitability of MSI for investigations on the spatial distribution of accumulated organic contaminants. However, both MSI methods required high exposure concentrations. Further improvements of ionization methods would be needed to address environmentally relevant concentrations.


Subject(s)
Amphipoda , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Biotransformation , Carbamazepine
10.
Environ Sci Technol ; 57(46): 18067-18079, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37279189

ABSTRACT

Nontarget high-resolution mass spectrometry screening (NTS HRMS/MS) can detect thousands of organic substances in environmental samples. However, new strategies are needed to focus time-intensive identification efforts on features with the highest potential to cause adverse effects instead of the most abundant ones. To address this challenge, we developed MLinvitroTox, a machine learning framework that uses molecular fingerprints derived from fragmentation spectra (MS2) for a rapid classification of thousands of unidentified HRMS/MS features as toxic/nontoxic based on nearly 400 target-specific and over 100 cytotoxic endpoints from ToxCast/Tox21. Model development results demonstrated that using customized molecular fingerprints and models, over a quarter of toxic endpoints and the majority of the associated mechanistic targets could be accurately predicted with sensitivities exceeding 0.95. Notably, SIRIUS molecular fingerprints and xboost (Extreme Gradient Boosting) models with SMOTE (Synthetic Minority Oversampling Technique) for handling data imbalance were a universally successful and robust modeling configuration. Validation of MLinvitroTox on MassBank spectra showed that toxicity could be predicted from molecular fingerprints derived from MS2 with an average balanced accuracy of 0.75. By applying MLinvitroTox to environmental HRMS/MS data, we confirmed the experimental results obtained with target analysis and narrowed the analytical focus from tens of thousands of detected signals to 783 features linked to potential toxicity, including 109 spectral matches and 30 compounds with confirmed toxic activity.


Subject(s)
Machine Learning , Mass Spectrometry
11.
Environ Sci Technol ; 57(24): 8890-8901, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37283463

ABSTRACT

Delayed toxicity is a phenomenon observed for aquatic invertebrates exposed to nicotinic acetylcholine receptor (nAChR) agonists, such as neonicotinoids. Furthermore, recent studies have described an incomplete elimination of neonicotinoids by exposed amphipods. However, a mechanistic link between receptor binding and toxicokinetic modeling has not been demonstrated yet. The elimination of the neonicotinoid thiacloprid in the freshwater amphipod Gammarus pulex was studied in several toxicokinetic exposure experiments, complemented with in vitro and in vivo receptor-binding assays. Based on the results, a two-compartment model was developed to predict the uptake and elimination kinetics of thiacloprid in G. pulex. An incomplete elimination of thiacloprid, independent of elimination phase duration, exposure concentrations, and pulses, was observed. Additionally, the receptor-binding assays indicated irreversible binding of thiacloprid to the nAChRs. Accordingly, a toxicokinetic-receptor model consisting of a structural and a membrane protein (including nAChRs) compartment was developed. The model successfully predicted internal thiacloprid concentrations across various experiments. Our results help in understanding the delayed toxic and receptor-mediated effects toward arthropods caused by neonicotinoids. Furthermore, the results suggest that more awareness toward long-term toxic effects of irreversible receptor binding is needed in a regulatory context. The developed model supports the future toxicokinetic assessment of receptor-binding contaminants.


Subject(s)
Amphipoda , Insecticides , Animals , Amphipoda/metabolism , Toxicokinetics , Bioaccumulation , Neonicotinoids/toxicity , Insecticides/toxicity
12.
Sci Total Environ ; 889: 164170, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37201846

ABSTRACT

Persistent, mobile and toxic (PMT), and very persistent and very mobile (vPvM) substances pose a threat to the water cycle but are often not covered in conventional environmental monitoring programs. Within this realm of substances, one compound class of concern are pesticides and their transformation products as they are deliberately introduced into the environment. To detect very polar anionic substances, including many pesticide transformation products with log DOW values ranging between -7.4 and 2.2, an ion chromatography high-resolution mass spectrometry method was developed in this study. Since inorganic anions, such as chloride and sulfate, interfere with the analysis of organic species, their removal via precipitation with Ba/Ag/H cartridges was assessed. To improve LOQs, vacuum-assisted evaporative concentration (VEC) was evaluated. By using VEC and removing inorganic salt ions, the median LOQ improved from 100 ng/L in evian® water without sample treatment to 10 ng/L after enrichment and 30 ng/L in karst groundwater. Using this method, twelve out of 64 substances covered by the final method were found in karst groundwater in concentrations of up to 5600 ng/L, and seven exceeded 100 ng/L. To the authors' knowledge, the dimethenamid TP M31 and chlorothalonil TP SYN548008 were detected for the first time in groundwater samples. The coupling to a high-resolution mass spectrometer also allows for non-target screening and hence, this method presents a powerful tool to tackle PMT/vPvM substances.


Subject(s)
Groundwater , Pesticides , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Pesticides/analysis , Groundwater/chemistry , Ions
13.
Environ Int ; 174: 107798, 2023 04.
Article in English | MEDLINE | ID: mdl-36965398

ABSTRACT

Permanent rainbow trout (Oncorhynchus mykiss) cell lines represent potential in vitro alternatives to experiments with fish. We here developed a method to assess the bioaccumulation potential of anionic organic compounds in fish, using the rainbow trout liver-derived RTL-W1 cell line. Based on the availability of high quality in vivo bioconcentration (BCF) and biomagnification (BMF) data and the substances' charge state at physiological pH, four anionic compounds were selected: pentachlorophenol (PCP), diclofenac (DCF), tecloftalam (TT) and benzotriazol-tert-butyl-hydroxyl-phenyl propanoic acid (BHPP). The fish cell line acute toxicity assay (OECD TG249) was used to derive effective concentrations 50 % and non-toxic exposure concentrations to determine exposure concentrations for bioaccumulation experiments. Bioaccumulation experiments were performed over 48 h with a total of six time points, at which cell, medium and plastic fractions were sampled and measured using high resolution tandem mass spectrometry after online solid phase extraction. Observed cell internal concentrations were over-predicted by KOW-derived predictions while pH-dependent octanol-water partitioning (DOW) and membrane lipid-water partitioning (DMLW) gave better predictions of cell internal concentrations. Measured medium and cell internal concentrations at steady state were used to calculate RTL-W1-based BCF, which were compared to DOW- or DMLW-based model approaches and in vivo data. With the exception of PCP, the cell-derived BCF best compared to DOW-based model predictions, which were higher than predictions based on DMLW. All methods predicted the in vivo BCF for diclofenac well. For PCP, the cell-derived BCF was lowest although all BCF predictions underestimated the in vivo BCF by ≥ 1 order of magnitude. The RTL-W1 cells, and all other prediction methods, largely overestimated in vivo BMF, which were available for PCP, TT and BHPP. We conclude that the RTL-W1 cell line can supplement BCF predictions for anionic compounds. For BMF estimations, however, in vitro-in vivo extrapolations need adaptation or a multiple cell line approach.


Subject(s)
Oncorhynchus mykiss , Water Pollutants, Chemical , Animals , Oncorhynchus mykiss/metabolism , Bioaccumulation , Diclofenac/toxicity , Liver/metabolism , Cell Line , Organic Chemicals/analysis , Water , Water Pollutants, Chemical/analysis
14.
Environ Toxicol Chem ; 42(9): 1993-2006, 2023 09.
Article in English | MEDLINE | ID: mdl-36946554

ABSTRACT

Bioaccumulation of organic contaminants from contaminated food sources might pose an underestimated risk toward shredding invertebrates. This assumption is substantiated by monitoring studies observing discrepancies of predicted tissue concentrations determined from laboratory-based experiments compared with measured concentrations of systemic pesticides in gammarids. To elucidate the role of dietary uptake in bioaccumulation, gammarids were exposed to leaf material from trees treated with a systemic fungicide mixture (azoxystrobin, cyprodinil, fluopyram, and tebuconazole), simulating leaves entering surface waters in autumn. Leaf concentrations, spatial distribution, and leaching behavior of fungicides were characterized using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and matrix-assisted laser desorption ionization-mass spectrometric imaging. The contribution of leached fungicides and fungicides taken up from feeding was assessed by assembling caged (no access) and uncaged (access to leaves) gammarids. The fungicide dynamics in the test system were analyzed using LC-HRMS/MS and toxicokinetic modeling. In addition, a summer scenario was simulated where water was the initial source of contamination and leaves contaminated by sorption. The uptake, translocation, and biotransformation of systemic fungicides by trees were compound-dependent. Internal fungicide concentrations of gammarids with access to leaves were much higher than in caged gammarids of the autumn scenario, but the difference was minimal in the summer scenario. In food choice and dissectioning experiments gammarids did not avoid contaminated leaves and efficiently assimilated contaminants from leaves, indicating the relevance of this exposure pathway in the field. The present study demonstrates the potential impact of dietary uptake on in situ bioaccumulation for shredders in autumn, outside the main application period. The toxicokinetic parameters obtained facilitate modeling of environmental exposure scenarios. The uncovered significance of dietary uptake for detritivores warrants further consideration from scientific as well as regulatory perspectives. Environ Toxicol Chem 2023;42:1993-2006. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Amphipoda , Fungicides, Industrial , Water Pollutants, Chemical , Animals , Fungicides, Industrial/metabolism , Bioaccumulation , Invertebrates/metabolism , Diet , Environmental Exposure , Amphipoda/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
15.
Integr Environ Assess Manag ; 19(3): 775-791, 2023 May.
Article in English | MEDLINE | ID: mdl-36281826

ABSTRACT

In order to protect European Union (EU) drinking water resources from chemical contamination, criteria for identifying persistent, mobile, and toxic (PMT) chemicals and very persistent and very mobile (vPvM) chemicals under the EU REACH Regulation were proposed by the German Environment Agency (Umweltbundesamt-UBA). Additionally, new hazard classes for PMT and vPvM substances in the revised EU classification, labeling, and packaging (CLP Regulation) are intended. Therefore, a reliable approach in the identification of potential drinking water resource contaminants is needed. The scientific basis of the property-based PMT/vPvM criteria, focusing on mobility, which dictates the migration of chemical drinking water sources, was evaluated, and a critical analysis of the deviation of sorption metrics from simple behavior was carried out. Based on our evaluation, a Koc may be used for nonionic substances on a screening level only, requiring a higher tier assessment. It is considered inappropriate for hydrophilic and ionizable chemicals, particularly for soils with low organic carbon contents. The nonextractable residue formation is complex and not well understood but remains significant in limiting the mobility of chemicals through soils and sediments. In order to inform the EU commission's work on the introduction of new hazard classes for PMT and vPvM substances into the European legislation, the derivation of a tiered approach is proposed, which utilizes the weight of evidence available, with adoption of appropriate higher tier models commensurate with the nature of the substance and the data available. Integr Environ Assess Manag 2023;19:775-791. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Drinking Water , Ecotoxicology , Water Resources , European Union , Soil , Risk Assessment
16.
Glob Chang Biol ; 29(5): 1390-1406, 2023 03.
Article in English | MEDLINE | ID: mdl-36448880

ABSTRACT

The acceleration of global climate change draws increasing attention towards interactive effects of temperature and organic contaminants. Many studies reported a higher sensitivity of aquatic invertebrates towards contaminant exposure with increasing or fluctuating temperatures. The hypothesis of this study was that the higher sensitivity of invertebrates is associated with the changes of toxicokinetic processes that determine internal concentrations of contaminants and consequently toxic effects. Therefore, the influence of temperature on toxicokinetic processes and the underlying mechanisms were studied in two key amphipod species (Gammarus pulex and Hyalella azteca). Bioconcentration experiments were carried out at four different temperatures with a mixture of 12 exposure relevant polar organic contaminants. Tissue and medium samples were taken in regular intervals and analysed by online solid-phase extraction liquid chromatography high-resolution tandem mass spectrometry. Subsequently, toxicokinetic rates were modelled and analysed in dependence of the exposure temperature using the Arrhenius equation. An exponential relationship between toxicokinetic rates versus temperature was observed and could be well depicted by applying the Arrhenius equation. Due to a similar Arrhenius temperature of uptake and elimination rates, the bioconcentration factors of the contaminants were generally constant across the temperature range. Furthermore, the Arrhenius temperature of the toxicokinetic rates and respiration was mostly similar. However, in some cases (citalopram, cyprodinil), the bioconcentration factor appeared to be temperature dependent, which could potentially be explained by the influence of temperature on active uptake mechanisms or biotransformation. The observed temperature effects on toxicokinetics may be particularly relevant in non-equilibrated systems, such as exposure peaks in summer as exemplified by the exposure modelling of a field measured pesticide peak where the internal concentrations increased by up to fourfold along the temperature gradient. The results provide novel insights into the mechanisms of chemical uptake, biotransformation and elimination in different climate scenarios and can improve environmental risk assessment.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Temperature , Toxicokinetics , Water Pollutants, Chemical/analysis , Invertebrates/metabolism , Fresh Water
17.
Water Res ; 218: 118514, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35545009

ABSTRACT

Bioaccumulation and trophic transfer of persistent legacy contaminants have been intensively characterized, but little is known on the contaminants of emerging concern (CECs) in freshwater food webs. Herein, we comprehensively screened CECs with a focus on polar substances and further evaluated their trophic transfer behavior in selected items from the food web of Lake Templin, Germany. Weselected one plankton, two mussel, and nine fish samples covering three trophic levels. With an effective multi-residue sample preparation method and high-resolution mass spectrometry-based target, suspect, and non-target screening, we characterized 477 targets and further screened unknown features in complex biota matrices. Of the 477 targets, 145 were detected and quantified in at least one species (0.02-3640 ng/g, dry weight). Additionally, the suspect and non-target analysis with experimental mass spectra libraries and in silico techniques (MetFrag and SIRIUS4/CSI:FingerID) enabled further identification of 27 unknown compounds with 19 confirmed by reference standards. Overall, the detected compounds belong to a diverse group of chemicals, including 71 pharmaceuticals, 27 metabolites, 26 pesticides, 16 per- and polyfluoroalkyl substances (PFASs), 4 plasticizers, 3 flame retardants, 11 other industrial chemicals and 14 others. Moreover, we determined the trophic magnification factor (TMF) of 34 polar CECs with >80% detection frequency, among which 6 PFASs including perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), perfluorotridecanoic acid (PFTrA), perfluorotetradecanoic acid (PFTeA), and perfluoroundecanoic acid (PFUnA), exhibited biomagnification potential (TMF =1.8 - 4.2, p < 0.05), whereas 5 pharmaceuticals (phenazone, progesterone, venlafaxine, levamisole, and lidocaine) and 1 personal care product metabolite (galaxolidone) showed biodilution potential (TMF = 0.4 - 0.6, p < 0.05).


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Fluorocarbons/analysis , Food Chain , Lakes/analysis , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
18.
Environ Sci Eur ; 34(1): 21, 2022.
Article in English | MEDLINE | ID: mdl-35281760

ABSTRACT

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.

19.
Sci Total Environ ; 808: 151361, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34808174

ABSTRACT

Surfactants are high-production-volume chemicals that are among the most abundant organic pollutants in municipal wastewater. In this study, sewage sludge samples of 36 Swiss wastewater treatment plants (WWTPs), serving 32% of the country's population, were analyzed for major surfactant classes by liquid chromatography mass spectrometry (LC-MS). The analyses required a variety of complementary approaches due to different analytical challenges, including matrix effects (which can affect adduct ion formation) and the lack of reference standards. The most abundant contaminants were linear alkylbenzene sulfonates (LAS; weighted mean [WM] concentration of 3700 µg g-1 dry weight), followed by secondary alkane sulfonates (SAS; 190 µg g-1). Alcohol polyethoxylates (AEO; 8.3 µg g-1), nonylphenol polyethoxylates (NPEO; 16 µg g-1), nonylphenol (NP; 3.1 µg g-1), nonylphenol ethoxy carboxylates (NPEC; 0.35 µg g-1) and tert-octylphenol (tert-OP, 1.8 µg g-1) were present at much lower concentrations. This concentration pattern agrees with the production volumes of the surfactants and their fates in WWTPs. Branched AEO homologues dominated over linear homologues, probably due to higher persistence. Sludge concentrations of LAS, SAS, and NP were positively correlated with the residence time in the anaerobic digester. Derivation of the per capita loads successfully revealed potential industrial/commercial emission sources. Comparison of recent versus historic data showed a decrease in NPEO and NP levels by one or two orders of magnitude since their ban in the 1980s. By contrast, LAS still exhibit similar concentrations compared to 30 years ago.


Subject(s)
Sewage , Water Purification , Surface-Active Agents , Switzerland , Wastewater
20.
ACS Environ Au ; 2(2): 166-175, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-37101586

ABSTRACT

Pesticides used in agriculture can end up in nearby streams and can have a negative impact on nontarget organisms such as aquatic invertebrates. During registration, bioaccumulation potential is often investigated using laboratory tests only. Recent studies showed that the magnitude of bioaccumulation in the field substantially differs from laboratory conditions. To investigate this discrepancy, we conducted a field bioaccumulation study in a stream known to receive pollutant loadings from agriculture. Our work incorporates measurements of stream pesticide concentrations at high temporal resolution (every 20 min), as well as sediment, leaves, and caged gammarid analyses (every 2-24 h) over several weeks. Of 49 investigated pesticides, 14 were detected in gammarids with highly variable concentrations of up to 140 ± 28 ng/gww. Toxicokinetic modeling using laboratory-derived uptake and depuration rate constants for azoxystrobin, cyprodinil, and fluopyram showed that despite the highly resolved water concentrations measured, the pesticide burden on gammarids remains underestimated by a factor of 1.9 ± 0.1 to 31 ± 3.0, with the highest underestimations occurring after rain events. Including dietary uptake from polluted detritus leaves and sediment in the model explained this underestimation only to a minor proportion. However, suspended solids analyzed during rain events had high pesticide concentrations, and uptake from them could partially explain the underestimation after rain events. Additional comparison between the measured and modeled data showed that the pesticide depuration in gammarids is slower in the field. This observation suggests that several unknown mechanisms may play a role, including lowered enzyme expression and mixture effects. Thus, it is important to conduct such retrospective risk assessments based on field investigations and adapt the registration accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...