Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Physiol Rep ; 11(18): e15815, 2023 09.
Article in English | MEDLINE | ID: mdl-37726258

ABSTRACT

While a definitive mechanism-of-action remains to be identified, recent findings indicate that ghrelin, particularly the unacylated form (UnAG), stimulates skeletal muscle fatty acid oxidation. The biological importance of UnAG-mediated increases in fat oxidation remains unclear, as UnAG peaks in the circulation before mealtimes, and decreases rapidly during the postprandial situation before increases in postabsorptive circulating lipids. Therefore, we aimed to determine if the UnAG-mediated stimulation of fat oxidation would persist long enough to affect the oxidation of meal-derived fatty acids, and if UnAG stimulated the translocation of fatty acid transporters to the sarcolemma as a mechanism-of-action. In isolated soleus muscle strips from male rats, short-term pre-treatment with UnAG elicited a persisting stimulus on fatty acid oxidation 2 h after the removal of UnAG. UnAG also caused an immediate phosphorylation of AMPK, but not an increase in plasma membrane FAT/CD36 or FABPpm. There was also no increase in AMPK signaling or increased FAT/CD36 or FABPpm content at the plasma membrane at 2 h which might explain the sustained increase in fatty acid oxidation. These findings confirm UnAG as a stimulator of fatty acid oxidation and provide evidence that UnAG may influence the handling of postprandial lipids. The underlying mechanisms are not known.


Subject(s)
AMP-Activated Protein Kinases , Ghrelin , Male , Animals , Rats , Muscle, Skeletal , Sarcolemma , CD36 Antigens , Fatty Acids , Membrane Transport Proteins
2.
J Biol Chem ; 299(9): 105079, 2023 09.
Article in English | MEDLINE | ID: mdl-37482278

ABSTRACT

Fuel interactions in contracting muscle represent a complex interplay between enzymes regulating carbohydrate and fatty acid catabolism, converging in the mitochondrial matrix. While increasing exercise intensity promotes carbohydrate use at the expense of fatty acid oxidation, the mechanisms underlying this effect remain poorly elucidated. As a potential explanation, we investigated whether exercise-induced reductions in intramuscular pH (acidosis) attenuate carnitine palmitoyltransferase-I (CPT-I)-supported bioenergetics, the rate-limiting step for fatty acid oxidation within mitochondria. Specifically, we assessed the effect of a physiologically relevant reduction in pH (pH 7.2 versus 6.8) on single and mixed substrate respiratory responses in murine skeletal muscle isolated mitochondria and permeabilized fibers. While pH did not influence oxidative phosphorylation stoichiometry (ADP/O ratios), coupling efficiency, oxygen affinity, or ADP respiratory responses, acidosis impaired lipid bioenergetics by attenuating respiration with L-carnitine and palmitoyl-CoA, while enhancing the inhibitory effect of malonyl-CoA on CPT-I. These acidotic effects were largely retained following a single bout of intense exercise. At rest, pyruvate and succinate-supported respiration were also impaired by acidosis. However, providing more pyruvate and ADP at pH 6.8 to model increases in glycolytic flux and ATP turnover with intense exercise overcame the acidotic attenuation of carbohydrate-linked oxidative phosphorylation. Importantly, this situation is fundamentally different from lipids where CPT-I substrate sensitivity and availability is impaired at higher power outputs suggesting lipid metabolism may be more susceptible to the effects of acidosis, possibly contributing to fuel shifts with increasing exercise intensity.


Subject(s)
Acidosis , Carnitine O-Palmitoyltransferase , Energy Metabolism , Lipid Metabolism , Physical Conditioning, Animal , Animals , Mice , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction , Pyruvates/metabolism , Pyruvates/pharmacology , Acidosis/metabolism , Mice, Inbred C57BL , Physical Conditioning, Animal/physiology , Hydrogen-Ion Concentration , Carbohydrate Metabolism , Electron Transport
3.
Res Sq ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37502859

ABSTRACT

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

4.
Zootaxa ; 5323(1): 126-132, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37518197

ABSTRACT

During an examination of Spanish Anthrenus spp. held in Andreas Herrmann's private collection, four specimens of a new species were noted: Anthrenus (Anthrenus) semipallens. Images of habitus features, including antenna, are presented and compared with other Anthrenus species thought to occur in Spain. A. semipallens is small so some comparison species could be eliminated courtesy of size. Although A. semipallens doesn't resemble the colour pattern of any other species, the possibility that A. semipallens is an unknown colour variant of a comparison species was considered. The A. semipallens specimens were dissected and the aedeagus compared with aedeagi from all other possible species. There was no similarity. Anthrenus semipallens is a valid new species.

5.
Zootaxa ; 5306(3): 377-384, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37518516

ABSTRACT

All examples of Anthrenus (Anthrenus) festivus were borrowed from the Natural History Museum, London for dissection to provide good images of external and internal features. Images of habitus, ventrites and antennae are presented along with aedeagus and sternite IX. The purpose of this was to provide clear information for future comparative taxonomic studies. During the examination of the specimens, a new species was discovered that had been collected in Bombay (Mumbai) in the late 19th century. Images of external and internal features of the holotype (male) and paratype (female) are provided. The new species is named Anthrenus (Anthrenus) mumbaiensis after the location of collection. Collection data from the study specimens, Andreas Herrmann's private collection, the literature, and verifiable images on iNaturalist were used to generate a distribution map. The map showed that A. festivus is found mainly in coastal regions of the western Mediterranean.


Subject(s)
Coleoptera , Male , Female , Animals , India , Animal Distribution
7.
Nature ; 619(7968): 143-150, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380764

ABSTRACT

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Subject(s)
Energy Metabolism , Growth Differentiation Factor 15 , Muscle, Skeletal , Weight Loss , Animals , Humans , Mice , Appetite Depressants/metabolism , Appetite Depressants/pharmacology , Appetite Depressants/therapeutic use , Caloric Restriction , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Eating/drug effects , Energy Metabolism/drug effects , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Receptors, Adrenergic, beta/metabolism , Weight Loss/drug effects
8.
J Physiol ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37293995

ABSTRACT

Skeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse-induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single-limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate. Compared with the contralateral control limb, 3 days of immobilization lowered myofibrillar fractional synthesis rates (FSR, P < 0.0001), resulting in muscle atrophy. Although FSR and mitophagy-related proteins were higher in subsarcolemmal (SS) compared with intermyofibrillar (IMF) mitochondria, immobilization for 3 days decreased FSR in both SS (P = 0.009) and IMF (P = 0.031) mitochondria. Additionally, 3 days of immobilization reduced maximal mitochondrial respiration, decreased mitochondrial protein content, and increased maximal mitochondrial reactive oxygen species emission, without altering mitophagy-related proteins in muscle homogenate or isolated mitochondria (SS and IMF). Although nitrate consumption did not attenuate the decline in muscle mass or myofibrillar FSR, intriguingly, nitrate completely prevented immobilization-induced reductions in SS and IMF mitochondrial FSR. In addition, nitrate prevented alterations in mitochondrial content and bioenergetics after both 3 and 7 days of immobilization. However, in contrast to 3 days of immobilization, nitrate did not prevent the decline in SS and IMF mitochondrial FSR after 7 days of immobilization. Therefore, although nitrate supplementation was not sufficient to prevent muscle atrophy, nitrate may represent a promising therapeutic strategy to maintain mitochondrial bioenergetics and transiently preserve mitochondrial protein synthesis rates during short-term muscle disuse. KEY POINTS: Alterations in mitochondrial bioenergetics (decreased respiration and increased reactive oxygen species) are thought to contribute to muscle atrophy and reduced protein synthesis rates during muscle disuse. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation could attenuate immobilization-induced skeletal muscle impairments in female mice. Dietary nitrate prevented short-term (3 day) immobilization-induced declines in mitochondrial protein synthesis rates, reductions in markers of mitochondrial content, and alterations in mitochondrial bioenergetics. Despite these benefits and the preservation of mitochondrial content and bioenergetics during more prolonged (7 day) immobilization, nitrate consumption did not preserve skeletal muscle mass or myofibrillar protein synthesis rates. Overall, although dietary nitrate did not prevent atrophy, nitrate supplementation represents a promising nutritional approach to preserve mitochondrial function during muscle disuse.

9.
Front Physiol ; 14: 1151389, 2023.
Article in English | MEDLINE | ID: mdl-37153211

ABSTRACT

While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.

10.
Zootaxa ; 5244(2): 197-200, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37044467

ABSTRACT

N/A.


Subject(s)
Coleoptera , Animals , Turkey , Greece
11.
J Appl Physiol (1985) ; 134(5): 1265-1277, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37055038

ABSTRACT

Previous research supports that low-load resistance exercise with blood flow restriction (LL-BFR) acutely increases physiological responses and muscle mass accrual compared with low-load resistance exercise (LL-RE) alone. However, most studies have work-matched LL-BFR and LL-RE. Completing sets to similar perceived efforts, thereby allowing for a variable amount of work, may provide a more ecologically valid approach to compare LL-BFR and LL-RE. This study aimed to examine acute signaling and training responses following LL-RE or LL-BFR performed to task failure. Ten participants had each leg randomly assigned to perform LL-RE or LL-BFR. Muscle biopsies were obtained before and 2-h after the first exercise bout and after 6-wk of training for Western blot and immunohistochemistry analyses. Repeated measure ANOVA and intraclass coefficients (ICCs) were used to compare responses of each condition. After exercise, AKT(T308) phosphorylation increased after LL-RE and LL-BFR (both ∼145% of baseline, P < 0.05) and trended for p70 S6K(T389) (LL-RE: ∼158% and LL-BFR: ∼137%, P = 0.06). BFR did not alter these responses, resulting in fair-excellent ICCs for signaling proteins involved in anabolism (ICCAKT(T308) = 0.889, P = 0.001; ICCAKT(S473) = 0.519, P = 0.074; ICCp70 S6K(T389) = 0.514, P = 0.105). After training, muscle fiber cross-sectional area and vastus lateralis whole muscle thickness were similar between conditions (ICC ≥ 0.637, P ≤ 0.031). Similar acute and chronic responses between conditions and high ICC values between legs suggest that both LL-BFR and LL-RE performed by the same person result in similar adaptations. These data support the concept that sufficient muscular exertion is a key factor for training-induced muscle hypertrophy with low-load resistance exercise independent of total work and blood flow.NEW & NOTEWORTHY The addition of blood flow restriction during low-load resistance exercise is considered to increase the signaling events and muscle growth responses to a greater extent than low-load resistance exercise alone. It remains unclear whether blood flow restriction accelerates or increases these adaptive responses, as most studies have each condition perform the same amount of work. Despite different amounts of work performed, we show similar signaling and muscle growth responses occur after low-load resistance exercise with and without blood flow restriction. Our work supports that blood flow restriction accelerates fatigue but does not increase the signaling events and muscle growth responses during low-load resistance exercise.


Subject(s)
Resistance Training , Humans , Resistance Training/methods , Proto-Oncogene Proteins c-akt/metabolism , Regional Blood Flow/physiology , Quadriceps Muscle , Hypertrophy/metabolism , Muscle, Skeletal/physiology , Muscle Strength
12.
Diabetes ; 72(7): 844-856, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36812497

ABSTRACT

Impaired heart function can develop in individuals with diabetes in the absence of coronary artery disease or hypertension, suggesting mechanisms beyond hypertension/increased afterload contribute to diabetic cardiomyopathy. Identifying therapeutic approaches that improve glycemia and prevent cardiovascular disease are clearly required for clinical management of diabetes-related comorbidities. Since intestinal bacteria are important for metabolism of nitrate, we examined whether dietary nitrate and fecal microbial transplantation (FMT) from nitrate-fed mice could prevent high-fat diet (HFD)-induced cardiac abnormalities. Male C57Bl/6N mice were fed a low-fat diet (LFD), HFD, or HFD+Nitrate (4 mmol/L sodium nitrate) for 8 weeks. HFD-fed mice presented with pathological left ventricle (LV) hypertrophy, reduced stroke volume, and increased end-diastolic pressure, in association with increased myocardial fibrosis, glucose intolerance, adipose inflammation, serum lipids, LV mitochondrial reactive oxygen species (ROS), and gut dysbiosis. In contrast, dietary nitrate attenuated these detriments. In HFD-fed mice, FMT from HFD+Nitrate donors did not influence serum nitrate, blood pressure, adipose inflammation, or myocardial fibrosis. However, microbiota from HFD+Nitrate mice decreased serum lipids, LV ROS, and similar to FMT from LFD donors, prevented glucose intolerance and cardiac morphology changes. Therefore, the cardioprotective effects of nitrate are not dependent on reducing blood pressure, but rather mitigating gut dysbiosis, highlighting a nitrate-gut-heart axis. ARTICLE HIGHLIGHTS: Identifying therapeutic approaches that prevent cardiometabolic diseases are clearly important, and nitrate represents one such potential compound given its multifactorial metabolic effects. We aimed to determine whether nitrate could prevent high-fat diet (HFD)-induced cardiac abnormalities and whether this was dependent on the gut microbiome. Dietary nitrate attenuated HFD-induced pathological changes in cardiac remodelling, left ventricle reactive oxygen species, adipose inflammation, lipid homeostasis, glucose intolerance, and gut dysbiosis. Fecal microbial transplantation from nitrate-fed mice also prevented serum dyslipidemia, left ventricle reactive oxygen species, glucose intolerance, and cardiac dysfunction. Therefore, the cardioprotective effects of nitrate are related to mitigating gut dysbiosis, highlighting a nitrate-gut-heart axis.


Subject(s)
Gastrointestinal Microbiome , Glucose Intolerance , Heart Diseases , Hypertension , Male , Mice , Animals , Glucose Intolerance/prevention & control , Gastrointestinal Microbiome/physiology , Reactive Oxygen Species , Mice, Obese , Nitrates/pharmacology , Dysbiosis/microbiology , Obesity/metabolism , Inflammation , Diet, High-Fat/adverse effects , Lipids , Fibrosis , Mice, Inbred C57BL
13.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R317-R328, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36622081

ABSTRACT

Independent supplementation with nitrate (NIT) and resveratrol (RSV) enriches various aspects of mitochondrial biology in key metabolic tissues. Although RSV is known to activate Sirt1 and initiate mitochondrial biogenesis, the metabolic benefits elicited by dietary nitrate appear to be dependent on 5'-adenosine monophosphate-activated protein kinase (AMPK)-mediated signaling events, a process also linked to the activation of Sirt1. Although the benefits of individual supplementation with these compounds have been characterized, it is unknown if co-supplementation may produce superior metabolic adaptations. Thus, we aimed to determine if treatment with combined +NIT and +RSV (+RN) could additively alter metabolic adaptations in the presence of a high-fat diet (HFD). Both +RSV and +NIT improved glucose tolerance compared with HFD (P < 0.05); however, this response was attenuated following combined +RN supplementation. Within skeletal muscle, all supplements increased mitochondrial ADP sensitivity compared with HFD (P < 0.05), without altering mitochondrial content. Although +RSV and +NIT decreased hepatic lipid deposition compared with HFD (P < 0.05), this effect was abolished with +RN, which aligned with significant reductions in Sirt1 protein content (P < 0.05) after combined treatment, in the absence of changes to mitochondrial content or function. Within epididymal white adipose tissue (eWAT), all supplements reduced crown-like structure accumulation compared with HFD (P < 0.0001) and mitochondrial reactive oxygen species (ROS) emission (P < 0.05), alongside reduced adipocyte cross-sectional area (CSA) (P < 0.05), with the greatest effect observed after +RN treatment (P = 0.0001). Although the present data suggest additive changes in adipose tissue metabolism after +RN treatment, concomitant impairments in hepatic lipid homeostasis appear to prevent improvements in whole body glucose homeostasis observed with independent treatment, which may be Sirt1 dependent.


Subject(s)
Nitrates , Sirtuin 1 , Mice , Animals , Male , Resveratrol/pharmacology , Nitrates/pharmacology , Sirtuin 1/metabolism , Dietary Supplements , Diet, High-Fat , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Lipids
14.
Am J Physiol Endocrinol Metab ; 323(2): E171-E184, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35732003

ABSTRACT

Rapid oscillations in cytosolic calcium (Ca2+) coordinate muscle contraction, relaxation, and physical movement. Intriguingly, dietary nitrate decreases ATP cost of contraction, increases force production, and increases cytosolic Ca2+, which would seemingly necessitate a greater demand for sarcoplasmic reticulum Ca2+ ATPase (SERCA) to sequester Ca2+ within the sarcoplasmic reticulum (SR) during relaxation. As SERCA is highly regulated, we aimed to determine the effect of 7-day nitrate supplementation (1 mM via drinking water) on SERCA enzymatic properties and the functional interaction between SERCA and mitochondrial oxidative phosphorylation. In soleus, we report that dietary nitrate increased force production across all stimulation frequencies tested, and throughout a 25 min fatigue protocol. Mice supplemented with nitrate also displayed an ∼25% increase in submaximal SERCA activity and SERCA efficiency (P = 0.053) in the soleus. To examine a possible link between ATP consumption and production, we established a methodology coupling SERCA and mitochondria in permeabilized muscle fibers. The premise of this experiment is that the addition of Ca2+ in the presence of ATP generates ADP from SERCA to support mitochondrial respiration. Similar to submaximal SERCA activity, mitochondrial respiration supported by SERCA-derived ADP was increased by ∼20% following nitrate in red gastrocnemius. This effect was fully attenuated by the SERCA inhibitor cyclopiazonic acid and was not attributed to differences in mitochondrial oxidative capacity, ADP sensitivity, protein content, or reactive oxygen species emission. Overall, these findings suggest that improvements in submaximal SERCA kinetics may contribute to the effects of nitrate on force production during fatigue.NEW & NOTEWORTHY We show that nitrate supplementation increased force production during fatigue and increased submaximal SERCA activity. This was also evident regarding the high-energy phosphate transfer from SERCA to mitochondria, as nitrate increased mitochondrial respiration supported by SERCA-derived ADP. Surprisingly, these observations were only apparent in muscle primarily expressing type I (soleus) but not type II fibers (EDL). These findings suggest that alterations in SERCA properties are a possible mechanism in which nitrate increases force during fatiguing contractions.


Subject(s)
Muscle Contraction , Nitrates , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Calcium/metabolism , Fatigue/metabolism , Female , Mice , Mitochondria/metabolism , Muscle Contraction/physiology , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
15.
Sci Rep ; 12(1): 7453, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523978

ABSTRACT

Intestinal homeostasis is highly dependent on optimal epithelial barrier function and permeability. Intestinal epithelial cells (IEC) regulate these properties acting as cellular gatekeepers by selectively absorbing nutrients and controlling the passage of luminal bacteria. These functions are energy demanding processes that are presumably met through mitochondrial-based processes. Routine methods for examining IEC mitochondrial function remain sparse, hence, our objective is to present standardized methods for quantifying mitochondrial energetics in an immortalized IEC line. Employing the murine IEC4.1 cell line, we present adapted methods and protocols to examine mitochondrial function using two well-known platforms: the Seahorse Extracellular Flux Analyzer and Oxygraph-2 k. To demonstrate the applicability of these protocols and instruments, IEC were treated with and without the murine colitogenic agent, dextran sulfate sodium (DSS, 2% w/v). Profound impairments with DSS treatment were found with both platforms, however, the Oxygraph-2 k allowed greater resolution of affected pathways including short-chain fatty acid metabolism. Mitochondrial functional analysis is a novel tool to explore the relationship between IEC energetics and functional consequences within the contexts of health and disease. The outlined methods offer an introductory starting point for such assessment and provide the investigator with insights into platform-specific capabilities.


Subject(s)
Colitis , Intestinal Mucosa , Animals , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/toxicity , Energy Metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism
16.
Redox Biol ; 52: 102307, 2022 06.
Article in English | MEDLINE | ID: mdl-35398714

ABSTRACT

Dietary nitrate supplementation, and the subsequent serial reduction to nitric oxide, has been shown to improve glucose homeostasis in several pre-clinical models of obesity and insulin resistance. While the mechanisms remain poorly defined, the beneficial effects of nitrate appear to be partially dependent on AMPK-mediated signaling events, a central regulator of metabolism and mitochondrial bioenergetics. Since AMPK can activate SIRT1, we aimed to determine if nitrate supplementation (4 mM sodium nitrate via drinking water) improved skeletal muscle mitochondrial bioenergetics and acetylation status in mice fed a high-fat diet (HFD: 60% fat). Consumption of HFD induced whole-body glucose intolerance, and within muscle attenuated insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity (higher apparent Km), submaximal ADP-supported respiration, mitochondrial hydrogen peroxide (mtH2O2) production in the presence of ADP and increased cellular protein carbonylation alongside mitochondrial-specific acetylation. Consumption of nitrate partially preserved glucose tolerance and, within skeletal muscle, normalized insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity, mtH2O2, protein carbonylation and global mitochondrial acetylation status. Nitrate also prevented the HFD-mediated reduction in SIRT1 protein, and interestingly, the positive effects of nitrate ingestion on glucose homeostasis and mitochondrial acetylation levels were abolished in SIRT1 inducible knock-out mice, suggesting SIRT1 is required for the beneficial effects of dietary nitrate. Altogether, dietary nitrate preserves mitochondrial ADP sensitivity and global lysine acetylation in HFD-fed mice, while in the absence of SIRT1, the effects of nitrate on glucose tolerance and mitochondrial acetylation were abrogated.


Subject(s)
Insulin Resistance , Sirtuin 1 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Acetylation , Adenosine Diphosphate/metabolism , Animals , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulin/metabolism , Lysine/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Nitrates/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
17.
Am J Physiol Cell Physiol ; 322(3): C546-C553, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35138177

ABSTRACT

We aimed to determine the combined effects of overexpressing plasma membrane fatty acid binding protein (FABPpm) and fatty acid translocase (CD36) on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates by +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ∼0.019 and ∼0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Cotransfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41%; CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the cotransfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15 s for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15 s. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15 s. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism of action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not coimmunoprecipitate.


Subject(s)
Fatty Acid-Binding Proteins , Fatty Acids , Biological Transport/physiology , CD36 Antigens/genetics , CD36 Antigens/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Sarcolemma/metabolism
18.
Function (Oxf) ; 3(5): zqac037, 2022.
Article in English | MEDLINE | ID: mdl-37954502

ABSTRACT

Within brown adipose tissue (BAT), the brain isoform of creatine kinase (CKB) has been proposed to regulate the regeneration of ADP and phosphocreatine in a futile creatine cycle (FCC) that stimulates energy expenditure. However, the presence of FCC, and the specific creatine kinase isoforms regulating this theoretical model within white adipose tissue (WAT), remains to be fully elucidated. In the present study, creatine did not stimulate respiration in cultured adipocytes, isolated mitochondria or mouse permeabilized WAT. Additionally, while creatine kinase ubiquitous-type, mitochondrial (CKMT1) mRNA and protein were detected in human WAT, shRNA-mediated reductions in Ckmt1 did not decrease submaximal respiration in cultured adipocytes, and ablation of CKMT1 in mice did not alter energy expenditure, mitochondrial responses to pharmacological ß3-adrenergic activation (CL 316, 243) or exacerbate the detrimental metabolic effects of consuming a high-fat diet. Taken together, these findings solidify CKMT1 as dispensable in the regulation of energy expenditure, and unlike in BAT, they do not support the presence of FCC within WAT.


Subject(s)
Adipose Tissue, Beige , Creatine , Animals , Humans , Mice , Adipose Tissue, Beige/metabolism , Adipose Tissue, White , Creatine/metabolism , Creatine Kinase/metabolism , Energy Metabolism/genetics , Mitochondria/metabolism
19.
Biochem J ; 478(21): 3809-3826, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34751699

ABSTRACT

While the etiology of type 2 diabetes is multifaceted, the induction of insulin resistance in skeletal muscle is a key phenomenon, and impairments in insulin signaling in this tissue directly contribute to hyperglycemia. Despite the lack of clarity regarding the specific mechanisms whereby insulin signaling is impaired, the key role of a high lipid environment within skeletal muscle has been recognized for decades. Many of the proposed mechanisms leading to the attenuation of insulin signaling - namely the accumulation of reactive lipids and the pathological production of reactive oxygen species (ROS), appear to rely on this high lipid environment. Mitochondrial biology is a central component to these processes, as these organelles are almost exclusively responsible for the oxidation and metabolism of lipids within skeletal muscle and are a primary source of ROS production. Classic studies have suggested that reductions in skeletal muscle mitochondrial content and/or function contribute to lipid-induced insulin resistance; however, in recent years the role of mitochondria in the pathophysiology of insulin resistance has been gradually re-evaluated to consider the biological effects of alterations in mitochondrial content. In this respect, while reductions in mitochondrial content are not required for the induction of insulin resistance, mechanisms that increase mitochondrial content are thought to enhance mitochondrial substrate sensitivity and submaximal adenosine diphosphate (ADP) kinetics. Thus, this review will describe the central role of a high lipid environment in the pathophysiology of insulin resistance, and present both classic and contemporary views of how mitochondrial biology contributes to insulin resistance in skeletal muscle.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Mitochondria/metabolism , Muscle, Skeletal , Reactive Oxygen Species/metabolism , Animals , Humans , Hyperglycemia , Insulin Resistance , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
20.
Am J Physiol Endocrinol Metab ; 321(2): E217-E228, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229472

ABSTRACT

The liver is particularly susceptible to the detrimental effects of a high-fat diet (HFD), rapidly developing lipid accumulation and impaired cellular homeostasis. Recently, dietary nitrate has been shown to attenuate HFD-induced whole body glucose intolerance and liver steatosis, however, the underlying mechanism(s) remain poorly defined. In the current study, we investigated the ability of dietary nitrate to minimize possible impairments in liver mitochondrial bioenergetics following 8 wk of HFD (60% fat) in male C57BL/6J mice. Consumption of a HFD caused whole body glucose intolerance (P < 0.0001), and within the liver, increased lipid accumulation (P < 0.0001), mitochondrial-specific reactive oxygen species emission (P = 0.007), and markers of oxidative stress. Remarkably, dietary nitrate attenuated almost all of these pathological responses. Despite the reduction in lipid accumulation and redox stress (reduced TBARS and nitrotyrosine), nitrate did not improve insulin signaling within the liver or whole body pyruvate tolerance (P = 0.313 HFD vs. HFD + nitrate). Moreover, the beneficial effects of nitrate were independent of changes in weight gain, 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) signaling, mitochondrial content, mitochondrial respiratory capacity and ADP sensitivity or antioxidant protein content. Combined, these data suggest nitrate supplementation represents a potential therapeutic strategy to attenuate hepatic lipid accumulation and decrease mitochondrial ROS emission following HFD, processes linked to improvements in whole body glucose tolerance. However, the beneficial effects of nitrate within the liver do not appear to be a result of increased oxidative capacity or mitochondrial substrate sensitivity.NEW & NOTEWORTHY The mechanism(s) for how dietary nitrate prevents high-fat diet (HFD)-induced glucose intolerance remain poorly defined. We show that dietary nitrate attenuates HFD-induced increases in lipid accumulation, mitochondrial-specific reactive oxygen species (ROS) emission, and markers of oxidative stress within the liver. The beneficial effects of nitrate were independent of changes 5' AMP-activated protein kinase signaling, mitochondrial content/respiratory capacity, or lipid-supported respiratory sensitivity. Combined, these data provide potential mechanisms underlying the therapeutic potential of dietary nitrate.


Subject(s)
Diet, High-Fat , Lipid Metabolism , Liver/metabolism , Mitochondria/metabolism , Nitrates/metabolism , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Homeostasis , Insulin/metabolism , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...