Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2790: 163-211, 2024.
Article in English | MEDLINE | ID: mdl-38649572

ABSTRACT

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, laser absorption spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets at lower cost and with unprecedented temporal resolution. More data and accompanying knowledge have permitted refinement of 13C discrimination model equations, but often at the expense of increased model complexity and difficult parametrization. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations available to researchers. We update our previous 2018 version of this chapter by including recently improved descriptions of (photo)respiratory processes and associated fractionations. We discuss the capabilities and limitations of the diverse 13C discrimination model equations and provide guidance for selecting the model complexity needed for different applications.


Subject(s)
Carbon Isotopes , Photosynthesis , Models, Biological , Carbon Dioxide/metabolism , Plants/metabolism
2.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575849

ABSTRACT

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Subject(s)
Atmosphere , Carbon Dioxide , Cellulose , Fabaceae , Oxygen Isotopes , Plant Leaves , Poaceae , Water , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Cellulose/metabolism , Poaceae/drug effects , Poaceae/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Fabaceae/drug effects , Fabaceae/physiology , Fabaceae/metabolism , Atmosphere/chemistry , Plant Stomata/drug effects , Plant Stomata/physiology
3.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488024

ABSTRACT

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Subject(s)
Pinus sylvestris , Trees , Ecosystem , Droughts , Isotopes/analysis , Pinus sylvestris/physiology , Acclimatization , Water/physiology , Carbon Isotopes/analysis , Oxygen Isotopes/analysis
4.
New Phytol ; 240(5): 1758-1773, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37680025

ABSTRACT

Oxygen and hydrogen isotopes of cellulose in plant biology are commonly used to infer environmental conditions, often from time series measurements of tree rings. However, the covariation (or the lack thereof) between δ18 O and δ2 H in plant cellulose is still poorly understood. We compared plant water, and leaf and branch cellulose from dominant tree species across an aridity gradient in Northern Australia, to examine how δ18 O and δ2 H relate to each other and to mean annual precipitation (MAP). We identified a decline in covariation from xylem to leaf water, and onwards from leaf to branch wood cellulose. Covariation in leaf water isotopic enrichment (Δ) was partially preserved in leaf cellulose but not branch wood cellulose. Furthermore, whilst δ2 H was well-correlated between leaf and branch, there was an offset in δ18 O between organs that increased with decreasing MAP. Our findings strongly suggest that postphotosynthetic isotope exchange with water is more apparent for oxygen isotopes, whereas variable kinetic and nonequilibrium isotope effects add complexity to interpreting metabolic-induced δ2 H patterns. Varying oxygen isotope exchange in wood and leaf cellulose must be accounted for when δ18 O is used to reconstruct climatic scenarios. Conversely, comparing δ2 H and δ18 O patterns may reveal environmentally induced shifts in metabolism.


Subject(s)
Cellulose , Oxygen , Oxygen/metabolism , Cellulose/metabolism , Wood/metabolism , Carbon Isotopes/metabolism , Hydrogen/metabolism , Water/metabolism , Oxygen Isotopes/metabolism , Plant Leaves/metabolism
5.
Plant Cell Environ ; 46(9): 2667-2679, 2023 09.
Article in English | MEDLINE | ID: mdl-37303253

ABSTRACT

Phloem sap transport, velocity and allocation have been proposed to play a role in physiological limitations of crop yield, along with photosynthetic activity or water use efficiency. Although there is clear evidence that carbon allocation to grains effectively drives yield in cereals like wheat (as reflected by the harvest index), the influence of phloem transport rate and velocity is less clear. Here, we took advantage of previously published data on yield, respiration, carbon isotope composition, nitrogen content and water consumption in winter wheat cultivars grown across several sites with or without irrigation, to express grain production in terms of phloem sucrose transport and compare with xylem water transport. Our results suggest that phloem sucrose transport rate follows the same relationship with phloem N transport regardless of irrigation conditions and cultivars, and seems to depend mostly on grain weight (i.e., mg per grain). Depending on the assumption made for phloem sap sucrose concentration, either phloem sap velocity or its proportionality coefficient to xylem velocity change little with environmental conditions. Taken as a whole, phloem transport from leaves to grains seems to be homeostatic within a narrow range of values and following relationships with other plant physiological parameters across cultivars and conditions. This suggests that phloem transport per se is not a limitation for yield in wheat but rather, is controlled to sustain grain filling.


Subject(s)
Carbon , Phloem , Phloem/physiology , Biological Transport , Water/physiology , Sucrose , Edible Grain
6.
Phytochemistry ; 207: 113563, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36528118

ABSTRACT

Hydrogen stable isotope analyses (δ2H) of plant derived organic compounds are a useful tool for ecological, environmental, and palaeoclimatological research. However, during organic compound synthesis, variable biosynthetic 2H-fractionation has been suggested to occur as a result of changes in plant carbon fluxes. So far, inference has been based on examining the δ2H patterns of plant compounds along environmental gradients, among plant species, and between plant organs. In an alternative approach, we used four plant species with four different types of mutations that cause impaired starch synthesis to assess whether variability in carbon metabolism affects the biosynthetic 2H-fractionation during cellulose, phytol, and acetogenic lipid synthesis. We found that mutants with impaired starch synthesis always had higher cellulose and phytol δ2H values compared to the wild type. By contrast, 2H-fractionation during acetogenic lipid biosynthesis generally did not show strong metabolic sensitivity. We rationalise these differences by considering the biosynthetic pathway of each compound and the likely source of the variable isotope fractionation. In different organic compounds, the sensitivity of variable biosynthetic 2H-fractionation to changes in C-metabolism depends on incorporation of specific H atoms from precursor molecules. As such, we determined that the similar increase in cellulose and phytol δ2H values as an effect of impaired starch synthesis most likely originates in triose-phosphates.


Subject(s)
Carbon , Hydrogen , Hydrogen/metabolism , Isotopes , Plants/metabolism , Organic Chemicals/metabolism , Cellulose/metabolism , Lipids , Starch/metabolism , Phytol/metabolism , Carbon Isotopes/metabolism , Plant Leaves/metabolism
8.
Nat Plants ; 8(8): 971-978, 2022 08.
Article in English | MEDLINE | ID: mdl-35941216

ABSTRACT

Stomata are orifices that connect the drier atmosphere with the interconnected network of more humid air spaces that surround the cells within a leaf. Accurate values of the humidities inside the substomatal cavity, wi, and in the air, wa, are needed to estimate stomatal conductance and the CO2 concentration in the internal air spaces of leaves. Both are vital factors in the understanding of plant physiology and climate, ecological and crop systems. However, there is no easy way to measure wi directly. Out of necessity, wi has been taken as the saturation water vapour concentration at leaf temperature, wsat, and applied to the whole leaf intercellular air spaces. We explored the occurrence of unsaturation by examining gas exchange of leaves exposed to various magnitudes of wsat - wa, or Δw, using a double-sided, clamp-on chamber, and estimated degrees of unsaturation from the gradient of CO2 across the leaf that was required to sustain the rate of CO2 assimilation through the upper surface. The relative humidity in the substomatal cavities dropped to about 97% under mild Δw and as dry as around 80% when Δw was large. Measurements of the diffusion of noble gases across the leaf indicated that there were still regions of near 100% humidity distal from the stomatal pores. We suggest that as Δw increases, the saturation edge retreats into the intercellular air spaces, accompanied by the progressive closure of mesophyll aquaporins to maintain the cytosolic water potential.


Subject(s)
Carbon Dioxide , Plant Leaves , Diffusion , Humidity , Photosynthesis/physiology , Plant Leaves/physiology , Temperature
9.
Plant Cell Environ ; 45(9): 2636-2651, 2022 09.
Article in English | MEDLINE | ID: mdl-35609972

ABSTRACT

Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ2 H) of plant cellulose are rare and current models are limited in their application. This is in part due to a lack in understanding of how 2 H-fractionations in carbohydrates differ between species. We analysed, for the first time, the δ2 H of leaf sucrose along with the δ2 H and δ18 O of leaf cellulose and leaf and xylem water across seven herbaceous species and a starchless mutant of tobacco. The δ2 H of sucrose explained 66% of the δ2 H variation in cellulose (R2 = 0.66), which was associated with species differences in the 2 H enrichment of sucrose above leaf water ( ε sucrose \unicode{x003B5}sucrose : -126% to -192‰) rather than by variation in leaf water δ2 H itself. ε sucrose \unicode{x003B5}sucrose was positively related to dark respiration (R2 = 0.27), and isotopic exchange of hydrogen in sugars was positively related to the turnover time of carbohydrates (R2 = 0.38), but only when ε sucrose \unicode{x003B5}sucrose was fixed to the literature accepted value of - 171 \unicode{x02212}171 ‰. No relation was found between isotopic exchange of hydrogen and oxygen, suggesting large differences in the processes shaping post-photosynthetic fractionation between elements. Our results strongly advocate that for robust applications of the leaf cellulose hydrogen isotope model, parameterization utilizing δ2 H of sugars is needed.


Subject(s)
Hydrogen , Sucrose , Cellulose , Isotopes , Plant Leaves , Water
12.
Nat Plants ; 6(3): 245-258, 2020 03.
Article in English | MEDLINE | ID: mdl-32170287

ABSTRACT

Stable isotopes are commonly used to study the diffusion of CO2 within photosynthetic plant tissues. The standard method used to interpret the observed preference for the lighter carbon isotope in C3 photosynthesis involves the model of Farquhar et al., which relates carbon isotope discrimination to physical and biochemical processes within the leaf. However, under many conditions the model returns unreasonable results for mesophyll conductance to CO2 diffusion (gm), especially when rates of photosynthesis are low. Here, we re-derive the carbon isotope discrimination model using modified assumptions related to the isotope effect of mitochondrial respiration. In particular, we treat the carbon pool associated with respiration as separate from the pool of primary assimilates. We experimentally test the model by comparing gm values measured with different CO2 source gases varying in their isotopic composition, and show that our new model returns matching gm values that are much more reasonable than those obtained with the previous model. We use our results to discuss CO2 diffusion properties within the mesophyll.


Subject(s)
Carbon Isotopes/metabolism , Photosynthesis , Plant Transpiration , Plants/metabolism , Models, Biological , Plant Leaves/metabolism
14.
Plant Physiol ; 181(3): 1175-1190, 2019 11.
Article in English | MEDLINE | ID: mdl-31519787

ABSTRACT

Theoretical models of photosynthetic isotopic discrimination of CO2 (13C and 18O) are commonly used to estimate mesophyll conductance (g m). This requires making simplifying assumptions and assigning parameter values so that g m can be solved for as the residual term. Uncertainties in g m estimation occur due to measurement noise and assumptions not holding, including parameter uncertainty and model parametrization. Uncertainties in the 13C model have been explored previously, but there has been little testing undertaken to determine the reliability of g m estimates from the 18O model (g m18). In this study, we exploited the action of carbonic anhydrase in equilibrating CO2 with leaf water and manipulated the observed photosynthetic discrimination (Δ18O) by changing the oxygen isotopic composition of the source gas CO2 and water vapor. We developed a two-source δ18O method, whereby two measurements of Δ18O were obtained for a leaf with its gas-exchange characteristics otherwise unchanged. Measurements were performed in broad bean (Vicia faba) and Algerian oak (Quercus canariensis) in response to light and vapor pressure deficit. Despite manipulating the Δ18O by over 100‰, in most cases we observed consistency in the calculated g m18, providing confidence in the measurements and model theory. Where there were differences in g m18 estimates between source-gas measurements, we explored uncertainty associated with two model assumptions (the isotopic composition of water at the sites of CO2-water exchange, and the humidity of the leaf internal airspace) and found evidence for both. Finally, we provide experimental guidelines to minimize the sensitivity of g m18 estimates to measurement errors. The two-source δ18O method offers a flexible tool for model parameterization and provides an opportunity to refine our understanding of leaf water and CO2 fluxes.


Subject(s)
Carbon Dioxide/metabolism , Oxygen Isotopes/metabolism , Carbon Isotopes/metabolism , Carbonic Anhydrases/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Quercus/metabolism , Water/metabolism
16.
Photosynth Res ; 141(1): 5-31, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30955143

ABSTRACT

The arrangement of mitochondria and chloroplasts, together with the relative resistances of cell wall and chloroplast, determine the path of diffusion out of the leaf for (photo)respired CO2. Traditional photosynthesis models have assumed a tight arrangement of chloroplasts packed together against the cell wall with mitochondria located behind the chloroplasts, deep inside the cytosol. Accordingly, all (photo)respired CO2 must cross the chloroplast before diffusing out of the leaf. Different arrangements have recently been considered, where all or part of the (photo)respired CO2 diffuses through the cytosol without ever entering the chloroplast. Assumptions about the path for the (photo)respiratory flux are particularly relevant for the calculation of mesophyll conductance (gm). If (photo)respired CO2 can diffuse elsewhere besides the chloroplast, apparent gm is no longer a mere physical resistance but a flux-weighted variable sensitive to the ratio of (photo)respiration to net CO2 assimilation. We discuss existing photosynthesis models in conjunction with their treatment of the (photo)respiratory flux and present new equations applicable to the generalized case where (photo)respired CO2 can diffuse both into the chloroplast and through the cytosol. Additionally, we present a new generalized Δ13C model that incorporates this dual diffusion pathway. We assess how assumptions about the fate of (photo)respired CO2 affect the interpretation of photosynthetic data and the challenges it poses for the application of different models.


Subject(s)
Carbon Isotopes/metabolism , Chloroplasts/metabolism , Mitochondria/metabolism , Models, Biological , Photosynthesis , Mesophyll Cells/metabolism
17.
Methods Mol Biol ; 1770: 155-196, 2018.
Article in English | MEDLINE | ID: mdl-29978402

ABSTRACT

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C-isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, tunable diode laser spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets, at low cost and with unprecedented temporal resolution. With more data and accompanying knowledge, it has become apparent that there is a need for increased complexity in models and calculations. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations needed for different applications.


Subject(s)
Biological Assay/methods , Carbon Isotopes , Isotope Labeling , Models, Biological , Photosynthesis , Algorithms , Carbon Dioxide/metabolism , Computer Simulation , Oxygen/metabolism , Spectrum Analysis/methods
19.
Methods Mol Biol ; 1653: 1-15, 2017.
Article in English | MEDLINE | ID: mdl-28822122

ABSTRACT

Photorespiratory fluxes can be easily estimated by photosynthetic gas exchange using an infrared gas analyzer and applying the Farquhar, von Caemmerer, and Berry (Farquhar et al. Planta 149:78-90, 1980) photosynthesis model. For a more direct measurement of photorespiratory CO2 release from glycine decarboxylation, infrared gas analysis can be coupled to membrane-inlet mass spectrometry, capable of separating the total CO2 concentration into its 12CO2 and 13CO2 components in a continuous online fashion. This chapter discusses how to calculate rates of photorespiration from Rubisco kinetics and describes in detail a method for measuring the CO2 release from glycine decarboxylation using 13CO2.


Subject(s)
Arabidopsis/physiology , Carbon Dioxide/analysis , Mass Spectrometry/methods , Oxygen Consumption/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Carbon Dioxide/metabolism , Carbon Isotopes , Decarboxylation , Glycine/metabolism , Kinetics , Mass Spectrometry/instrumentation , Oxygen/analysis , Oxygen/metabolism , Ribulose-Bisphosphate Carboxylase/physiology
20.
Plant Cell ; 28(10): 2365-2384, 2016 10.
Article in English | MEDLINE | ID: mdl-27655842

ABSTRACT

Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Water/metabolism , Gene Expression Regulation, Plant/physiology , Temperature , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...