Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 163(7): 918-27, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20878260

ABSTRACT

An integrated biodiesel process that combines enzymatic esterification and alkaline transesterification is suggested. With focus on the enzymatic step, the paper provides proof of concept and suggestions for further process development. Hence, palm fatty acid distillate (PFAD) has been enzymatically converted to fatty acid methyl esters in a two-step process using the immobilized lipase Novozym 435 in packed-bed columns. With only a small excess of methanol, the first reaction stage could reduce the free fatty acid (FFA) content from 85% to 5%. After removal of water by simple phase separation, it was possible to lower the FFA content to 2.5% in a second reaction stage. Both reaction stages are relatively fast with suggested reaction times of 15 min in column 1 (productivity 10 kg/kg/h) and 30 min in column 2 (productivity 5 kg/kg/h), resulting in 15% FFA after column 1 and 5% FFA after column 2. A lifetime study indicated that approximately 3,500 kg PFAD/kg Novozym 435 can be treated in the first reaction stage before the enzyme has become fully inactivated. With further optimization, the enzymatic process could be a real alternative to today's sulfuric acid catalyzed process.


Subject(s)
Biocatalysis , Biofuels , Lipase/metabolism , Plant Oils/metabolism , Distillation , Enzymes, Immobilized , Esterification , Fatty Acids, Nonesterified/chemistry , Fatty Acids, Nonesterified/metabolism , Fungal Proteins , Lipase/chemistry , Methanol/chemistry , Palm Oil , Plant Oils/chemistry , Sulfuric Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL