Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 27(5): 578-589, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29644543

ABSTRACT

Substituted phenylamine antioxidants (SPAs) are additives in a variety of commercial polymers (e.g., lubricants, plastics, etc.). Based on their physicochemical properties, if SPAs were to enter an aquatic system, they would likely partition into sediment and have the capacity to bioaccumulate in biota. This study investigated the potential of four sediment-associated SPAs, diphenylamine (DPA), N-phenyl-1-naphthalene (PNA), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (DPPDA), and 4,4'-methylene-bis[N-sec-butylaniline] (MBA) to accumulate in the tissues of freshwater mussels (Lampsilis siliquoidea) and oligochaete worms (Tubifex tubifex). Mussels and worms were exposed to sediment spiked with individual SPAs for 28 d. The concentration of SPAs was measured in the gill, gonad, and remaining viscera of the mussels and entire body of the worms. The majority of biota-sediment accumulation factors (28-d BSAFs) for the different tissues of mussels were < 1. The highest concentrations of SPAs were consistently observed in the gill tissue of mussels relative to the gonad and viscera. The 28-d BSAFs for DPPDA and MBA for worms were < 1, and for DPA and PNA, they ranged from 0.38-2.13 and 1.54-33.24, respectively. The higher 28-d BSAFs observed for worms compared to mussels were likely because worms are endobenthic and feed on sediment-associated organic matter. PNA and DPPDA have similar octanol-water partition coefficients (Kow) but greater 28-d BSAFs were observed for PNA compared to DPPDA for both species. This observation provides evidence that biota may be able to metabolize and/or excrete SPAs with similar physicochemical properties at considerably different rates. The 28-d BSAFs observed for sediment-associated SPAs are lower than those typically required for a chemical to be classified as bioaccumulative.


Subject(s)
Aniline Compounds/metabolism , Antioxidants/metabolism , Oligochaeta/metabolism , Unionidae/metabolism , Water Pollutants, Chemical/metabolism , Animals , Geologic Sediments/analysis
2.
Environ Pollut ; 229: 281-289, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28601017

ABSTRACT

Substituted phenylamines (SPAs) are incorporated into a variety of consumer products (e.g., polymers, lubricants) in order to increase the lifespan of the products by acting as a primary antioxidant. Based on their physicochemical properties, if SPAs were to enter the aquatic environment, they would likely partition into sediment. No studies to date have investigated the effect of sediment-associated SPAs on aquatic organisms. The current study examined the effect of four SPAs (diphenylamine (DPA); N-phenyl-1-napthylamine (PNA); N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (DPPDA); 4,4'-methylene-bis[N-sec-butylaniline] (MBA)) on three different life stages of the freshwater mussel, Lampsilis siliquoidea. The viability of larvae (glochidia) of L. siliquoidea and Lampsilis fasciola was assessed after 48 h of exposure to SPAs in water. The 48-h EC50s for glochidia viability of L. siliquoidea were 5951, 606, 439, and 258 µg/L for DPA, PNA, DPPDA, and MBA, respectively, and 7946, 591, 137, and 47 µg/L, respectively, for L. fasciola. Juvenile (7-15 months) and adult L. siliquoidea were exposed to sediment-associated SPAs for 28 d. LC50s for juvenile mussels were 18, 55, 62, and 109 µg/g dry weight (dw) of sediment for DPA, PNA, DPPDA, and MBA, respectively. Adult mussels were exposed to sub-lethal concentrations of sediment-associated SPAs in order to investigate reactive oxygen species (ROS), lipid peroxidation and total glutathione in the gill, gonad, and digestive gland tissue, and viability and DNA damage in hemocytes. No significant concentration-dependent trend in any of these biochemical and cellular endpoints relative to the concentration of sediment-associated SPAs was observed in any tissues. Investigations into the concentration of SPAs in the aquatic environment are required before a conclusion can be made on whether these compounds pose a hazard to the different life stages of freshwater mussels.


Subject(s)
Aniline Compounds/metabolism , Antioxidants/metabolism , Bivalvia/physiology , Animals , Bivalvia/drug effects , Bivalvia/metabolism , Fresh Water/chemistry , Larva/drug effects , Phenylenediamines , Unionidae/drug effects , Water Pollutants, Chemical/pharmacology
3.
Chemosphere ; 181: 250-258, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28448906

ABSTRACT

Substituted phenylamine antioxidants (SPAs) are produced in relatively high volumes and used in a range of applications (e.g., rubber, polyurethane); however, little is known about their toxicity to aquatic biota. Therefore, current study examined the effects of chronic exposure (28 d) to four sediment-associated SPAs on epibenthic (Hyalella azteca) and endobenthic (Tubifex tubifex) organisms. In addition, acute (96-h), water-only exposures were conducted with H. azteca. Mortality, growth and biomass production were assessed in juvenile H. azteca exposed to diphenylamine (DPA), N-phenyl-1-napthylamine (PNA), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (DPPDA), or 4,4'-methylene-bis[N-sec-butylaniline] (MBA). Mortality of adult T. tubifex and reproduction were assessed following exposure to the four SPAs. The 96-h LC50s for juvenile H. azteca were 1443, 109, 250, and >22 µg/L and 28-d LC50s were 22, 99, 135, and >403 µg/g dry weight (dw) for DPA, PNA, DPPDA, and MBA, respectively. Reproductive endpoints for T. tubifex (EC50s for production of juveniles > 500 µm: 15, 9, 4, 3.6 µg/g dw, for DPA, PNA, DPPDA, and MBA, respectively) were an order of magnitude more sensitive than endpoints for juvenile H. azteca and mortality of adult worms. The variation in toxicity across the four SPAs was likely related to the bioavailability of the sediment-associated chemicals, which was determined by the chemical properties of the SPAs (e.g., solubility in water, Koc). The variation in the sensitivity between the two species was likely due to differences in the magnitude of exposure, which is a function of the life histories of the epibenthic amphipod and the endobenthic worm. The data generated from this study will support effect characterization for ecological risk assessment.


Subject(s)
Amphipoda/drug effects , Annelida/drug effects , Antioxidants/chemistry , Antioxidants/toxicity , Geologic Sediments/chemistry , Aniline Compounds , Animals , Invertebrates , Mortality , Water Pollutants, Chemical/toxicity
4.
Environ Pollut ; 218: 428-435, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27450416

ABSTRACT

Neonicotinoid insecticides can be transported from agricultural fields, where they are used as foliar sprays or seed treatments, to surface waters by surface or sub-surface runoff. Few studies have investigated the toxicity of neonicotinoid or the related butenolide insecticides to freshwater mollusk species. The current study examined the effect of neonicotinoid and butenolide exposures to the early-life stages of the ramshorn snail, Planorbella pilsbryi, and the wavy-rayed lampmussel, Lampsilis fasciola. Juvenile P. pilsbryi were exposed to imidacloprid, clothianidin, or thiamethoxam for 7 or 28 d and mortality, growth, and biomass production were measured. The viability of larval (glochidia) L. fasciola was monitored during a 48 h exposure to six neonicotinoids (imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, or dinotefuran), or a butenolide (flupyradifurone). The 7-d LC50s of P. pilsbryi for imidacloprid, clothianidin, and thiamethoxam were ≥4000 µg/L and the 28-d LC50s were ≥182 µg/L. Growth and biomass production were considerably more sensitive endpoints than mortality with EC50s ranging from 33.2 to 122.0 µg/L. The 48-h LC50s for the viability of glochidia were ≥456 µg/L for all seven insecticides tested. Our data indicate that neonicotinoid and butenolide insecticides pose less of a hazard with respect to mortality of the two species of mollusk compared to the potential hazard to other non-target aquatic insects.


Subject(s)
4-Butyrolactone/analogs & derivatives , Environmental Monitoring/methods , Fresh Water/chemistry , Insecticides/toxicity , Pyridines/toxicity , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , 4-Butyrolactone/chemistry , 4-Butyrolactone/toxicity , Animals , Guanidines/chemistry , Guanidines/toxicity , Imidazoles/chemistry , Imidazoles/toxicity , Insecticides/chemistry , Neonicotinoids , Nitro Compounds/chemistry , Nitro Compounds/toxicity , Oxazines/chemistry , Oxazines/toxicity , Pyridines/chemistry , Thiamethoxam , Thiazines/chemistry , Thiazines/toxicity , Thiazoles/chemistry , Thiazoles/toxicity , Unionidae/growth & development , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...