Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(10): 1804-1810, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29678460

ABSTRACT

Novel conformationally constrained BET bromodomain inhibitors have been developed. These inhibitors were optimized in two similar, yet distinct chemical series, the 6-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (A) and the 1-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (B). Each series demonstrated excellent activity in binding and cellular assays, and lead compounds from each series demonstrated significant efficacy in in vivo tumor xenograft models.


Subject(s)
Nuclear Proteins/antagonists & inhibitors , Pyridones/chemistry , Transcription Factors/antagonists & inhibitors , Animals , Binding Sites , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Half-Life , Humans , Mice , Microsomes/metabolism , Molecular Dynamics Simulation , Multiple Myeloma/drug therapy , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Pyridones/pharmacokinetics , Pyridones/pharmacology , Pyridones/therapeutic use , Structure-Activity Relationship , Transcription Factors/metabolism , Transplantation, Heterologous
2.
J Med Chem ; 60(9): 3828-3850, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28368119

ABSTRACT

Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, Ki = 160 µM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models.


Subject(s)
Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Animals , Crystallography, X-Ray , Drug Discovery , Macrocyclic Compounds/pharmacokinetics , Molecular Structure , Pyridones/pharmacokinetics , Rats , Structure-Activity Relationship
3.
Life Sci ; 74(22): 2693-705, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15043985

ABSTRACT

Histone deacetylases (HDACs) are a family of enzymes involved in transcription regulation. HDACs are known to play key roles in the regulation of cell proliferation; consequently, inhibition of HDACs has become an interesting approach for anti-cancer therapy. However, expression of mammalian HDACs has proven to be difficult. All attempts to express these HDACs in E.coli, Pichia and baculovirus systems were unsuccessful. Here we present the stable expression of human recombinant His-tagged HDAC1 and HDAC3 in mammalian cells. Full-length human genes for HDAC1 and HDAC3 were cloned into the pcDNA 3.1 vector containing a N-terminal His-tag with an enterokinase cleavage site. Recombinant HDAC enzyme activity was only detected after nickel affinity purification due to high activity of endogenous HDACs; and removal of the His-tag increased activity 2-4 fold. Western blots demonstrated the nickel affinity purified rhHDAC1 preparation also contained endogenous HDAC2 and HDAC3; likewise, rhHDAC3 preparation contained endogenous HDAC1 and HDAC2. Therefore, the active HDAC preparation is actually a multi-protein and a multi-HDAC containing complex. This provides one explanation for the similar IC50 values exhibited by SAHA and MS-275 against nuclear HDACs and rhHDAC1 and 3 preparations. These results demonstrate that recombinant forms of the HDACs can be over-expressed in mammalian cells, isolated as active multi-protein complexes that contain multiple HDAC enzymes, and caution must be used when determining HDAC inhibitor in vitro selectivity.


Subject(s)
Gene Expression Regulation, Enzymologic , Histone Deacetylases/biosynthesis , Multienzyme Complexes/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Blotting, Western , Cell Division , Cloning, Molecular , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , HeLa Cells , Histone Deacetylase 1 , Histone Deacetylases/genetics , Histone Deacetylases/pharmacology , Humans , Multienzyme Complexes/genetics , Multienzyme Complexes/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Substrate Specificity , Transfection
4.
Bioorg Med Chem Lett ; 13(19): 3331-5, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-12951120

ABSTRACT

Alpha-keto ester and amides were found to be potent inhibitors of histone deacetylase. Nanomolar inhibitors against the isolated enzyme and sub-micromolar inhibitors of cellular proliferation were obtained. The alpha-keto amide 30 also exhibited significant anti-tumor effects in an in vivo tumor model.


Subject(s)
Amides/chemistry , Amides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Animals , Cell Line, Tumor , Histone Deacetylases/metabolism , Humans , Mice , Xenograft Model Antitumor Assays/methods
5.
J Med Chem ; 45(1): 219-32, 2002 Jan 03.
Article in English | MEDLINE | ID: mdl-11754593

ABSTRACT

A novel series of sulfone N-formylhydroxylamines (retrohydroxamates) have been investigated as matrix metalloproteinases (MMP) inhibitors. The substitution of the ether linkage of ABT-770 (5) with a sulfone group 13a led to a substantial increase in activity against MMP-9 but was accompanied by a loss of selectivity for inhibition of MMP-2 and -9 over MMP-1 and diminished oral exposure. Replacement of the biphenyl P1' substituent with a phenoxyphenyl group provided compounds that are highly selective for inhibition of MMP-2 and -9 over MMP-1. Optimization of the substituent adjacent to the retrohydroxamate center in this series led to the clinical candidate ABT-518 (6), a highly potent, selective, orally bioavailable MMP inhibitor that has been shown to significantly inhibit tumor growth in animal cancer models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Formamides/chemical synthesis , Hydroxylamines/chemical synthesis , Metalloendopeptidases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line , Formamides/chemistry , Formamides/pharmacokinetics , Formamides/pharmacology , Hydroxylamines/chemistry , Hydroxylamines/pharmacokinetics , Hydroxylamines/pharmacology , Macaca fascicularis , Matrix Metalloproteinase Inhibitors , Mice , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL