Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 16(7): 3053-3064, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31136181

ABSTRACT

Many inhaled drugs are poorly water soluble, and the dissolution rate is often the rate-limiting step in the overall absorption process. To improve understanding of pulmonary drug dissolution, four poorly soluble inhalation compounds (AZD5423 (a developmental nonsteroidal glucocorticoid), budesonide, fluticasone furoate (FF), and fluticasone propionate (FP)) were administered as suspensions or dry powders to the well-established isolated perfused rat lung (IPL) model. Two particle size distributions (d50 = 1.2 µm and d50 = 2.8 µm) were investigated for AZD5423. The pulmonary absorption rates of the drugs from the suspensions and dry powders were compared with historical absorption data for solutions to improve understanding of the effects of dissolution on the overall pulmonary absorption process for poorly soluble inhaled drugs. A physiologically based biopharmaceutical in silico model was used to analyze the experimental IPL data and to estimate a dissolution parameter ( kex vivo). A similar in silico approach was applied to in vitro dissolution data from the literature to obtain an in vitro dissolution parameter ( kin vitro). When FF, FP, and the larger particles of AZD5423 were administered as suspensions, drug dissolution was the rate-limiting step in the overall absorption process. However, this was not the case for budesonide, which has the highest aqueous solubility (61 µM), and the smaller particles of AZD5423, probably because of the increased surface area available for dissolution (d50 = 1.2 µm). The estimated dissolution parameters were ranked in accordance with the solubility of the drugs, and there was good agreement between kex vivo and kin vitro. The dry powders of all the compounds were absorbed more slowly than the suspensions, indicating that wetting is an important parameter for the dissolution of dry powders. A wetting factor was introduced to the in silico model to explain the difference in absorption profiles between the suspensions and dry powders where AZD5423 had the poorest wettability followed by FP and FF. The IPL model in combination with an in silico model is a useful tool for investigating pulmonary dissolution and improving understanding of dissolution-related parameters for poorly soluble inhaled compounds.


Subject(s)
Drug Liberation , Lung/physiology , Models, Biological , Respiratory Tract Absorption/drug effects , Solubility , Acetamides/administration & dosage , Administration, Inhalation , Androstadienes/administration & dosage , Animals , Budesonide/administration & dosage , Fluticasone/administration & dosage , Indazoles/administration & dosage , Lung/drug effects , Male , Particle Size , Powders/pharmacokinetics , Rats , Rats, Wistar , Suspensions/pharmacokinetics , Wettability
2.
Int J Pharm ; 563: 304-313, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30959239

ABSTRACT

Acoustic Emission (AE) measurement technology has gained wide appreciation in material sciences and process monitoring. In inhalation research, AE has been used for adherence indicating applications in clinical studies. Promising results from feasibility studies using AE combined with multivariate data analysis (AE-MVDA) in the analysis of devices for inhalation have prompted a broader study reported in this paper. This work presents the novel application of AE-MVDA for assessment of the combined inhalation device and formulation performance. The purpose is to evaluate the benefits that this technology can provide to inhalation product development programs. The work was carried out using two different dry powder inhaler device model systems while investigating different performance features. The devices were filled with dry powder formulations with both placebo and with active pharmaceutical ingredient (API). The acquired AE data was analyzed using multivariate data analysis tools such as Principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The AE profiles were indicative for device and formulation performance. Normal and deviating performances were readily picked up in the AE data. Moreover, performance trends between doses withdrawn from the inhalers were also observable. Lastly, differences in the AE profile between the formulations could be detected. The overall conclusion from the AE-MVDA measurement approach evaluation is that it has the potential to add value as a cost-effective, non-invasive quality and performance monitoring technology both in development and in production of inhaled medicines.


Subject(s)
Acoustics , Dry Powder Inhalers , Equipment Design , Multivariate Analysis , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...