Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Adv Sci (Weinh) ; : e2307963, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602451

ABSTRACT

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.

2.
J Biomed Mater Res A ; 112(5): 754-769, 2024 05.
Article in English | MEDLINE | ID: mdl-38084898

ABSTRACT

The therapeutic effectiveness of anticancer drugs, including nanomedicines, can be enhanced with active receptor-targeting strategies. Epidermal growth factor receptor (EGFR) is an important cancer biomarker, constitutively expressed in sarcoma patients of different histological types. The present work reports materials and in vitro biomedical analyses of silanized (passive delivery) and/or EGF-functionalized (active delivery) ceria nanorods exhibiting highly defective catalytically active surfaces. The EGFR-targeting efficiency of nanoceria was confirmed by receptor-binding studies. Increased cytotoxicity and reactive oxygen species (ROS) production were observed for EGF-functionalized nanoceria owing to enhanced cellular uptake by HT-1080 fibrosarcoma cells. The uptake was confirmed by TEM and confocal microscopy. Silanized nanoceria demonstrated negligible/minimal cytotoxicity toward healthy MRC-5 cells at 24 and 48 h, whereas this was significant at 72 h owing to a nanoceria accumulation effect. In contrast, considerable cytotoxicity toward the cancer cells was exhibited at all three times points. The ROS generation and associated cytotoxicity were moderated by the equilibrium between catalysis by ceria, generation of cell debris, and blockage of active sites. EGFR-targeting is shown to enhance the uptake levels of nanoceria by cancer cells, subsequently enhancing the overall anticancer activity and therapeutic performance of ceria.


Subject(s)
Cerium , Nanoparticles , Humans , Reactive Oxygen Species/metabolism , Epidermal Growth Factor , Nanoparticles/chemistry , ErbB Receptors , Cerium/pharmacology , Cerium/chemistry
3.
Signal Transduct Target Ther ; 8(1): 400, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37857607

ABSTRACT

Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Child , Glioblastoma/drug therapy , Glioblastoma/genetics , Signal Transduction , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain/pathology , Precision Medicine
4.
ACS Biomater Sci Eng ; 9(2): 1053-1065, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36726306

ABSTRACT

The time interval between the diagnosis of tumor in a patient and the initiation of treatment plays a key role in determining the survival rates. Consequently, theranostics, which is a combination of diagnosis and treatment, can be expected to improve survival rates. Early detection and immediate treatment initiation are particularly important in the management of melanoma, where survival rates decrease considerably after metastasis. The present work reports for the first time the application of fluorescein isothiocyanate (FITC)-tagged epidermal growth factor receptor (EGFR)-functionalized ceria nanoparticles, which exhibit intrinsic reactive oxygen species (ROS)-mediated anticancer effects, for the EGFR-targeted diagnosis and treatment of melanoma. The theranostic activity was demonstrated using two-dimensional (2D) and three-dimensional (3D) models of parental and metastatic melanoma. Confocal imaging studies confirm the diagnostic activity of the system. The therapeutic efficiency was evaluated using cell viability studies and ROS measurements. The ROS elevation levels are compared across the 2D and 3D models. Significant enhancement in the generation of cellular ROS and absence in mitochondrial ROS are observed in the 2D models. In contrast, significant elevations in both ROS types are observed for the 3D models, which are significantly higher for the metastatic spheroids than the parental spheroids, thus indicating the suitability of this nanoformulation for the treatment of metastatic melanoma.


Subject(s)
Melanoma , Nanoparticles , Humans , Reactive Oxygen Species , Precision Medicine , Spheroids, Cellular/pathology , Cell Culture Techniques/methods , Melanoma/diagnostic imaging , Melanoma/drug therapy , Nanoparticles/therapeutic use , ErbB Receptors
5.
BJUI Compass ; 4(1): 44-58, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36569495

ABSTRACT

Metformin, the first line pharmacotherapy for type 2 diabetes has demonstrated favourable effects in prostate cancer (PCa) across a range of studies evaluating PCa patient outcomes amongst metformin users. However, a lack of rigorously conducted prospective studies has stalled clinical use in this setting. Despite multiple studies evaluating the mechanisms underpinning antitumour effects of metformin in PCa, to date, no reviews have compared these findings. This systematic review and meta-analysis consolidates the mechanisms accounting for the antitumour effect of metformin in PCa and evaluates the antitumour efficacy of metformin in preclinical PCa studies. Data were obtained through Medline and EMBASE, extracted by two independent assessors. Risk of bias was assessed using the TOXR tool. Meta-analysis compared in vivo reductions of PCa tumour volume with metformin. In total, 447 articles were identified with 80 duplicates, and 261 articles excluded based on eligibility criteria. The remaining 106 articles were assessed and 71 excluded, with 35 articles included for systematic review, and eight included for meta-analysis. The mechanisms of action of metformin regarding tumour growth, viability, migration, invasion, cell metabolism, and activation of signalling cascades are individually discussed. The mechanisms by which metformin inhibits PCa cell growth are multimodal. Metformin regulates expression of multiple proteins/genes to inhibit cellular proliferation, cell cycle progression, and cellular invasion and migration. Published in vivo studies also conclusively demonstrate that metformin inhibits PCa growth. This highlights the potential of metformin to be repurposed as an anticancer agent, warranting further investigation of metformin in the setting of PCa.

6.
Oncogene ; 41(34): 4066-4078, 2022 08.
Article in English | MEDLINE | ID: mdl-35851845

ABSTRACT

Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies.


Subject(s)
Glutamine , Triple Negative Breast Neoplasms , Cell Line, Tumor , Citric Acid Cycle , Glucose/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
7.
Biomacromolecules ; 23(6): 2374-2387, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35508075

ABSTRACT

The synthesis of new amino acid-containing, cell-specific, therapeutically active polymers is presented. Amino acids served as starting material for the preparation of tailored polymers with different amino acids in the side chain. The reversible addition-fragmentation chain-transfer (RAFT) polymerization of acrylate monomers yielded polymers of narrow size distribution (D ≤ 1.3). In particular, glutamate (Glu)-functionalized, zwitterionic polymers revealed a high degree of cytocompatibility and cellular specificity, i.e., showing association to different cancer cell lines, but not with nontumor fibroblasts. Energy-dependent uptake mechanisms were confirmed by means of temperature-dependent cellular uptake experiments as well as localization of the polymers in cellular lysosomes determined by confocal laser scanning microscopy (CLSM). The amino acid receptor antagonist O-benzyl-l-serine (BzlSer) was chosen as an active ingredient for the design of therapeutic copolymers. RAFT copolymerization of Glu acrylate and BzlSer acrylate resulted in tailored macromolecules with distinct monomer ratios. The targeted, cytotoxic activity of copolymers was demonstrated by means of multiday in vitro cell viability assays. To this end, polymers with 25 mol % BzlSer content showed cytotoxicity against cancer cells, while leaving fibroblasts unaffected over a period of 3 days. Our results emphasize the importance of biologically derived materials to be included in synthetic polymers and the potential of zwitterionic, amino acid-derived materials for cellular targeting. Furthermore, it highlights that the fine balance between cellular specificity and unspecific cytotoxicity can be tailored by monomer ratios within a copolymer.


Subject(s)
Amino Acids , Smart Materials , Acrylates/pharmacology , Amines , Amino Acids/chemistry , Polymerization , Polymers/chemistry
8.
Clin Cancer Res ; 28(7): 1446-1459, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35078861

ABSTRACT

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.


Subject(s)
DNA-Activated Protein Kinase , Prostatic Neoplasms, Castration-Resistant , DNA , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Glycolysis , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Proteomics , Pyruvate Kinase/metabolism
9.
Cancers (Basel) ; 13(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771529

ABSTRACT

BACKGROUND: Identification of prognostic biomarkers in cancers is a crucial step to improve overall survival (OS). Although mutations in tumour protein 53 (TP53) is prevalent in astrocytoma, the prognostic effects of TP53 mutation are unclear. METHODS: In this retrospective study, we sequenced TP53 exons 1 to 10 in a cohort of 102 lower-grade glioma (LGG) subtypes and determined the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. Publicly available datasets were analysed to confirm the findings. RESULTS: In astrocytoma, mutations in TP53 codon 273 were associated with a significantly increased OS compared to the TP53 wild-type (HR (95% CI): 0.169 (0.036-0.766), p = 0.021). Public datasets confirmed these findings. TP53 codon 273 mutant astrocytomas were significantly more chemosensitive than TP53 wild-type astrocytomas (HR (95% CI): 0.344 (0.13-0.88), p = 0.0148). Post-chemotherapy, a significant correlation between TP53 and YAP1 mRNA was found (p = 0.01). In O (6)-methylguanine methyltransferase (MGMT) unmethylated chemotherapy-treated astrocytoma, both TP53 codon 273 and YAP1 mRNA were significant prognostic markers. In oligodendroglioma, TP53 mutations were associated with significantly decreased OS. CONCLUSIONS: Based on these findings, we propose that certain TP53 mutant astrocytomas are chemosensitive through the involvement of YAP1, and we outline a potential mechanism. Thus, TP53 mutations may be key drivers of astrocytoma therapeutic efficacy and influence survival outcomes.

10.
Elife ; 102021 08 12.
Article in English | MEDLINE | ID: mdl-34382934

ABSTRACT

Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity as revealed by 1,2-13C2 glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by acetyl-CoA carboxylase 1 (ACC1) and mammalian target of rapamycin complex 1 (mTORC1); and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and 6PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single-agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Cell Line , Emodin/analogs & derivatives , Feedback , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Pentose Phosphate Pathway , Prostatic Neoplasms/genetics , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism
11.
Cancer Res ; 81(13): 3461-3479, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33980655

ABSTRACT

Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.


Subject(s)
Amino Acid Transport System y+/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Cancer-Associated Fibroblasts/drug effects , Carcinoma, Pancreatic Ductal/prevention & control , Gene Expression Regulation, Neoplastic/drug effects , Pancreatic Neoplasms/prevention & control , Tumor Microenvironment , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/immunology , Animals , Apoptosis , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
12.
Cancer Discov ; 11(9): 2334-2353, 2021 09.
Article in English | MEDLINE | ID: mdl-33879449

ABSTRACT

Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both in vitro and in vivo models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers. SIGNIFICANCE: This study identifies stage-specific consequences of RB loss across cancer progression that have a direct impact on tumor response to clinically utilized therapeutics. The study herein is the first to investigate the effect of RB loss on global metabolic regulation and link RB/E2F1 to redox control in multiple advanced diseases.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
E2F1 Transcription Factor/genetics , Retinal Neoplasms/genetics , Retinoblastoma Protein/genetics , Retinoblastoma/genetics , Animals , Cell Line, Tumor , Humans , Mice , Neoplasm Metastasis , Retinal Neoplasms/pathology , Retinoblastoma/secondary , Signal Transduction , Xenograft Model Antitumor Assays
13.
J Pathol ; 254(2): 135-146, 2021 06.
Article in English | MEDLINE | ID: mdl-33768538

ABSTRACT

Glutamine is a critical nutrient in cancer; however, its contribution to purine metabolism in prostate cancer has not previously been determined. Guanosine monophosphate synthetase (GMPS) acts in the de novo purine biosynthesis pathway, utilizing a glutamine amide to synthesize the guanine nucleotide. This study demonstrates that GMPS mRNA expression correlates with Gleason score in prostate cancer samples, while high GMPS expression was associated with decreased rates of overall and disease/progression-free survival. Pharmacological inhibition or knockdown of GMPS significantly decreased cell growth in both LNCaP and PC-3 prostate cancer cells. We utilized [15 N-(amide)]glutamine and [U-13 C5 ]glutamine metabolomics to dissect the pathways involved and despite similar growth inhibition by GMPS knockdown, we show unique metabolic effects across each cell line. Using a PC-3 xenograft mouse model, tumor growth was also significantly decreased after GMPS knockdown, highlighting the importance of glutamine metabolism and providing support for GMPS as a therapeutic target in prostate cancer. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carbon-Nitrogen Ligases/antagonists & inhibitors , Glutamine/metabolism , Prostatic Neoplasms/enzymology , Animals , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Cell Line, Tumor , Cell Proliferation , Cohort Studies , Computational Biology , Disease Models, Animal , Gene Knockdown Techniques , Humans , Male , Metabolic Networks and Pathways , Metabolomics , Mice , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Purines/metabolism , Tissue Array Analysis , Up-Regulation , Xenograft Model Antitumor Assays
14.
Phytochemistry ; 179: 112478, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805621

ABSTRACT

Large-scale extraction of the leaves of the Australian rainforest tree Maytenus bilocularis followed by extensive purification studies afforded the targeted and abundant dihydro-ß-agarofuran, bilocularin A, in sufficient quantities (>500 mg) for detailed semi-synthetic chemistry. Eight bilocularin A carbamate analogues were synthesised using a series of commercially available isocyanate reagents in high purity (>95%) and variable yields (9-91%). All previously undescribed analogues were spectroscopically characterised using NMR, UV, IR and MS data. One compound afforded crystalline material and subsequent single crystal X-ray analysis (Cu-Kα) confirmed the chemical structure along with the absolute configuration. All compounds were evaluated for anti-proliferative activity against the human prostate cancer cell line LNCaP; none of the compounds showed significant (>50%) growth inhibition at 20 µM. Compounds were also tested for their ability to inhibit leucine transport in LNCaP cells, and two analogues showed moderate activity with IC50 values of 8.9 and 8.5 µM. This is the first reported synthesis of dihydro-ß-agarofuran carbamate derivatives.


Subject(s)
Prostatic Neoplasms , Sesquiterpenes , Australia , Carbamates/pharmacology , Humans , Leucine , Male , Molecular Structure , Prostatic Neoplasms/drug therapy
15.
Elife ; 92020 07 20.
Article in English | MEDLINE | ID: mdl-32686647

ABSTRACT

Fatty acid ß-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited ß-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.


Subject(s)
Ferroptosis , Oxidoreductases Acting on CH-CH Group Donors/genetics , Prostatic Neoplasms/physiopathology , Cell Line, Tumor , Fatty Acids, Unsaturated/metabolism , Humans , Male , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Prostatic Neoplasms/genetics
16.
Neurochem Res ; 45(6): 1268-1286, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31981058

ABSTRACT

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems-the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.


Subject(s)
Amino Acid Transport System ASC/metabolism , Antineoplastic Agents/metabolism , Excitatory Amino Acid Transporter 3/metabolism , Excitatory Amino Acid Transporter 5/metabolism , Neoplasms/metabolism , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/chemistry , Amino Acid Transport Systems/chemistry , Amino Acid Transport Systems/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Excitatory Amino Acid Transporter 3/chemistry , Excitatory Amino Acid Transporter 5/antagonists & inhibitors , Excitatory Amino Acid Transporter 5/chemistry , Humans , Neoplasms/drug therapy , Protein Structure, Tertiary , Structure-Activity Relationship
17.
Cell Commun Signal ; 17(1): 83, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31345230

ABSTRACT

BACKGROUND: Growth factors, such as EGF, activate the PI3K/Akt/mTORC1 signalling pathway, which regulates a distinct program of protein synthesis leading to cell growth. This pathway relies on mTORC1 sensing sufficient levels of intracellular amino acids, such as leucine, which are required for mTORC1 activation. However, it is currently unknown whether there is a direct link between these external growth signals and intracellular amino acid levels. In primary prostate cancer cells, intracellular leucine levels are regulated by L-type amino acid transporter 3 (LAT3/SLC43A1), and we therefore investigated whether LAT3 is regulated by growth factor signalling. METHODS: To investigate how PI3K/Akt signalling regulates leucine transport, prostate cancer cells were treated with different PI3K/Akt inhibitors, or stable knock down of LAT3 by shRNA, followed by analysis of leucine uptake, western blotting, immunofluorescent staining and proximity ligation assay. RESULTS: Inhibition of PI3K/Akt signalling significantly reduced leucine transport in LNCaP and PC-3 human prostate cancer cell lines, while growth factor addition significantly increased leucine uptake. These effects appeared to be mediated by LAT3 transport, as LAT3 knockdown blocked leucine uptake, and was not rescued by growth factor activation or further inhibited by signalling pathway inhibition. We further demonstrated that EGF significantly increased LAT3 protein levels when Akt was phosphorylated, and that Akt and LAT3 co-localised on the plasma membrane in EGF-activated LNCaP cells. These effects were likely due to stabilisation of LAT3 protein levels on the plasma membrane, with EGF treatment preventing ubiquitin-mediated LAT3 degradation. CONCLUSION: Growth factor-activated PI3K/Akt signalling pathway regulates leucine transport through LAT3 in prostate cancer cell lines. These data support a direct link between growth factor and amino acid uptake, providing a mechanism by which the cells rapidly coordinate amino acid uptake for cell growth.


Subject(s)
Amino Acid Transport Systems, Basic/genetics , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Leucine/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Amino Acid Transport Systems, Basic/metabolism , Biological Transport/drug effects , Cell Proliferation/drug effects , Humans , Male , PC-3 Cells , Phosphoproteins/metabolism , Protein Transport/drug effects , Signal Transduction/drug effects
19.
Cancer Cell ; 35(2): 238-255.e6, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30753825

ABSTRACT

Cancer immunotherapies provide survival benefits in responding patients, but many patients fail to respond. Identifying the biology of treatment response and resistance are a priority to optimize drug selection and improve patient outcomes. We performed transcriptomic and immune profiling on 158 tumor biopsies from melanoma patients treated with anti-PD-1 monotherapy (n = 63) or combined anti-PD-1 and anti-CTLA-4 (n = 57). These data identified activated T cell signatures and T cell populations in responders to both treatments. Further mass cytometry analysis identified an EOMES+CD69+CD45RO+ effector memory T cell phenotype that was significantly more abundant in responders to combined immunotherapy compared with non-responders (n = 18). The gene expression profile of this population was associated with longer progression-free survival in patients treated with single agent and greater tumor shrinkage in both treatments.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Ipilimumab/administration & dosage , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma/drug therapy , Nivolumab/administration & dosage , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Skin Neoplasms/drug therapy , T-Lymphocytes/drug effects , Aged , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CTLA-4 Antigen/immunology , Drug Resistance, Neoplasm , Female , Humans , Immunologic Memory/drug effects , Lectins, C-Type/immunology , Leukocyte Common Antigens/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Middle Aged , Phenotype , Programmed Cell Death 1 Receptor/immunology , Retrospective Studies , Signal Transduction/drug effects , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Burden/drug effects
20.
Mol Cancer Res ; 17(4): 949-962, 2019 04.
Article in English | MEDLINE | ID: mdl-30647103

ABSTRACT

Prostate cancer cells exhibit altered cellular metabolism but, notably, not the hallmarks of Warburg metabolism. Prostate cancer cells exhibit increased de novo synthesis of fatty acids (FA); however, little is known about how extracellular FAs, such as those in the circulation, may support prostate cancer progression. Here, we show that increasing FA availability increased intracellular triacylglycerol content in cultured patient-derived tumor explants, LNCaP and C4-2B spheroids, a range of prostate cancer cells (LNCaP, C4-2B, 22Rv1, PC-3), and prostate epithelial cells (PNT1). Extracellular FAs are the major source (∼83%) of carbons to the total lipid pool in all cell lines, compared with glucose (∼13%) and glutamine (∼4%), and FA oxidation rates are greater in prostate cancer cells compared with PNT1 cells, which preferentially partitioned extracellular FAs into triacylglycerols. Because of the higher rates of FA oxidation in C4-2B cells, cells remained viable when challenged by the addition of palmitate to culture media and inhibition of mitochondrial FA oxidation sensitized C4-2B cells to palmitate-induced apoptosis. Whereas in PC-3 cells, palmitate induced apoptosis, which was prevented by pretreatment of PC-3 cells with FAs, and this protective effect required DGAT-1-mediated triacylglycerol synthesis. These outcomes highlight for the first-time heterogeneity of lipid metabolism in prostate cancer cells and the potential influence that obesity-associated dyslipidemia or host circulating has on prostate cancer progression. IMPLICATIONS: Extracellular-derived FAs are primary building blocks for complex lipids and heterogeneity in FA metabolism exists in prostate cancer that can influence tumor cell behavior.


Subject(s)
Fatty Acids/metabolism , Lipids/biosynthesis , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Extracellular Fluid/metabolism , Humans , Lipid Metabolism , Male , Palmitates/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...