Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 533(3): 376-382, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32962862

ABSTRACT

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Biomarkers/metabolism , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Connexins/genetics , Connexins/metabolism , Contactin 2/genetics , Contactin 2/metabolism , Electric Stimulation , Gene Expression , Heart Conduction System/cytology , Heart Conduction System/physiology , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Induced Pluripotent Stem Cells/cytology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Primary Cell Culture , Transcription Factors/genetics , Transcription Factors/metabolism , Troponin I/genetics , Troponin I/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Gap Junction alpha-5 Protein
SELECTION OF CITATIONS
SEARCH DETAIL