Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
J Mech Behav Biomed Mater ; 153: 106486, 2024 May.
Article in English | MEDLINE | ID: mdl-38428205

ABSTRACT

In this study, we conduct a multiscale, multiphysics modeling of the brain gray matter as a poroelastic composite. We develop a customized representative volume element based on cytoarchitectural features that encompass important microscopic components of the tissue, namely the extracellular space, the capillaries, the pericapillary space, the interstitial fluid, cell-cell and cell-capillary junctions, and neuronal and glial cell bodies. Using asymptotic homogenization and direct numerical simulation, the effective properties at the tissue level are identified based on microscopic properties. To analyze the influence of various microscopic elements on the effective/macroscopic properties and tissue response, we perform sensitivity analyses on cell junction (cluster) stiffness, cell junction diameter (dimensions), and pericapillary space width. The results of this study suggest that changes in cell adhesion can greatly affect both mechanical and hydraulic (interstitial fluid flow and porosity) features of brain tissue, consistent with the effects of neurodegenerative diseases.


Subject(s)
Extracellular Fluid , Extracellular Space , Cell Adhesion , Computer Simulation , Porosity
2.
J Endovasc Ther ; : 15266028241235876, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528650

ABSTRACT

CLINICAL IMPACT: On needs-based ex vivo monitoring of implantable devices or tissues/organs in cardiovascular simulators provides new insights and paves new paths for device prototypes. The insights gained could not only support the needs of patients, but also inform engineers, scientists and clinicians about undiscovered aspects of diseases (during routine monitoring). We analyze seminal and current work and highlight a variety of opportunities for developing preclinical tools that would improve strategies for future implantable devices. Holistically, mock circulation loop studies can bridge the gap between in vivo and in vitro approaches, as well as clinical and laboratory settings, in a mutually beneficial manner.

3.
Acta Biomater ; 178: 1-12, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401775

ABSTRACT

Cardiovascular diseases are the leading cause of death worldwide and include, among others, critical conditions of the aortic wall. Importantly, such critical conditions require effective diagnosis and treatment, which are not yet accurate enough. However, they could be significantly strengthened with predictive material models of the aortic wall. In particular, such predictive models could support surgical decisions, preoperative planning, and estimation of postoperative tissue remodeling. However, developing a predictive model requires experimental data showing both structural parameters and mechanical behavior. Such experimental data can be obtained using multimodal experiments. This review therefore discusses the current approaches to multimodal experiments. Importantly, the strength of the aortic wall is determined primarily by its passive components, i.e., mainly collagen, elastin, and proteoglycans. Therefore, this review focuses on multimodal experiments that relate the passive mechanical behavior of the human aortic wall to the structure and organization of its passive components. In particular, the multimodal experiments are classified according to the expected results. Multiple examples are provided for each experimental class and summarized with highlighted advantages and disadvantages of the method. Finally, future directions of multimodal experiments are envisioned and evaluated. STATEMENT OF SIGNIFICANCE: Multimodal experiments are innovative approaches that have gained interest very quickly, but also recently. This review presents therefore a first clear summary of groundbreaking research in the field of multimodal experiments. The benefits and limitations of various types of multimodal experiments are thoroughly discussed, and a comprehensive overview of possible results is provided. Although this review focuses on multimodal experiments performed on human aortic tissues, the methods used and described are not limited to human aortic tissues but can be extended to other soft materials.


Subject(s)
Aorta , Collagen , Humans , Collagen/chemistry , Stress, Mechanical , Biomechanical Phenomena
4.
Sci Rep ; 14(1): 1999, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263352

ABSTRACT

Several materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times. We validated the method using artificially generated 3D images, in terms of fiber dispersion by considering the error between the standard deviation of the reconstructed and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber dispersion.

5.
Acta Biomater ; 173: 167-183, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37984627

ABSTRACT

The complex mechanics of the gastric wall facilitates the main digestive tasks of the stomach. However, the interplay between the mechanical properties of the stomach, its microstructure, and its vital functions is not yet fully understood. Importantly, the pig animal model is widely used in biomedical research for preliminary or ethically prohibited studies of the human digestion system. Therefore, this study aims to thoroughly characterize the mechanical behavior and microstructure of the porcine stomach. For this purpose, multiple quasi-static mechanical tests were carried out with three different loading modes, i.e., planar biaxial extension, radial compression, and simple shear. Stress-relaxation tests complemented the quasi-static experiments to evaluate the deformation and strain-dependent viscoelastic properties. Each experiment was conducted on specimens of the complete stomach wall and two separate layers, mucosa and muscularis, from each of the three gastric regions, i.e., fundus, body, and antrum. The significant preconditioning effects and the considerable regional and layer-specific differences in the tissue response were analyzed. Furthermore, the mechanical experiments were complemented with histology to examine the influence of the microstructural composition on the macrostructural mechanical response and vice versa. Importantly, the shear tests showed lower stresses in the complete wall compared to the single layers which the loose network of submucosal collagen might explain. Also, the stratum arrangement of the muscularis might explain mechanical anisotropy during tensile tests. This study shows that gastric tissue is characterized by a highly heterogeneous microstructure with regional variations in layer composition reflecting not only functional differences but also diverse mechanical behavior. STATEMENT OF SIGNIFICANCE: Unfortunately, only few experimental data on gastric tissue are available for an adequate material parameter and model estimation. The present study therefore combines layer- and region-specific stomach wall mechanics obtained under multiple loading conditions with histological insights into the heterogeneous microstructure. On the one hand, the extensive data sets of this study expand our understanding of the interplay between gastric mechanics, motility and functionality, which could help to identify and treat associated pathologies. On the other hand, such data sets are of high relevance for the constitutive modeling of stomach tissue, and its application in the field of medical engineering, e.g., in the development of surgical staplers and the improvement of bariatric surgical interventions.


Subject(s)
Collagen , Stomach , Swine , Animals , Humans , Stomach/physiology , Models, Animal , Collagen/chemistry , Anisotropy , Mechanical Tests , Biomechanical Phenomena , Stress, Mechanical
6.
Comput Methods Programs Biomed ; 244: 107994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159449

ABSTRACT

BACKGROUND AND OBJECTIVE: Although thoracic aortic endovascular repair (TEVAR) has shown promising outcomes in the treatment of patients with complicated type B aortic dissection, complications still occur after TEVAR that can lead to catastrophic events. Biomechanical interactions between the stent-graft (SG) and the local aortic tissue play a critical role in determining the outcome of TEVAR. Different SG design may cause different biomechanical responses in the treated aorta, but such information is not known at the time of pre-procedural planning. By developing patient-specific virtual stent-graft deployment tools, it is possible to analyse and compare the biomechanical impact of different SGs on the local aorta for individual patients. METHODS: A finite element based virtual SG deployment model was employed in this study. Computational simulations were performed on a patient-specific model of type B aortic dissection, accounting for details of the SG design and the hyperelastic behaviour of the aortic wall. Based on the geometry reconstructed from the pre-TEVAR CTA scan, the patient-specific aortic dissection model was created and pre-stressed. Parametric models of three different SG products (SG1, SG2 and SG3) were built with two different lengths for each design. The SG models incorporated different stent and graft materials, stent strut patterns, and assembly approaches. Using our validated SG deployment simulation framework, virtual trials were performed on the patient-specific aortic dissection model using different SG products and varying SG lengths. CONCLUSION: Simulation results for different SG products suggest that SG3 with a longer length (SG3-long) would be the most appropriate device for the individual patient. Compared to SG1-short (the SG deployed in the patient), SG3-long followed the true lumen tortuosity closely, resulted in a more uniform true lumen expansion and a significant reduction in peak stress in the distal landing zone. These simulation results are promising and demonstrate the feasibility of using the virtual SG deployment model to assist clinicians in pre-procedural planning.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Blood Vessel Prosthesis , Endovascular Aneurysm Repair , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/methods , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/complications , Biomechanical Phenomena , Prosthesis Design , Aortography/methods , Treatment Outcome , Retrospective Studies , Aortic Dissection/surgery
7.
Sci Rep ; 13(1): 19641, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949949

ABSTRACT

In this study, we propose a novel micromechanical model for the brain white matter, which is described as a heterogeneous material with a complex network of axon fibers embedded in a soft ground matrix. We developed this model in the framework of RVE-based multiscale theories in combination with the finite element method and the embedded element technique for embedding the fibers. Microstructural features such as axon diameter, orientation and tortuosity are incorporated into the model through distributions derived from histological data. The constitutive law of both the fibers and the matrix is described by isotropic one-term Ogden functions. The hyperelastic response of the tissue is derived by homogenizing the microscopic stress fields with multiscale boundary conditions to ensure kinematic compatibility. The macroscale homogenized stress is employed in an inverse parameter identification procedure to determine the hyperelastic constants of axons and ground matrix, based on experiments on human corpus callosum. Our results demonstrate the fundamental effect of axon tortuosity on the mechanical behavior of the brain's white matter. By combining histological information with the multiscale theory, the proposed framework can substantially contribute to the understanding of mechanotransduction phenomena, shed light on the biomechanics of a healthy brain, and potentially provide insights into neurodegenerative processes.


Subject(s)
White Matter , Humans , White Matter/physiology , Mechanotransduction, Cellular , Stress, Mechanical , Brain/physiology , Biomechanical Phenomena , Finite Element Analysis , Models, Biological
8.
Cardiovasc Diabetol ; 22(1): 327, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017481

ABSTRACT

BACKGROUND: Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS: We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS: DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION: We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.


Subject(s)
Atherosclerosis , Insulin Resistance , Plaque, Atherosclerotic , Animals , Humans , Mice , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cholesterol , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Matrix Metalloproteinase 12/genetics , Mice, Inbred C57BL , Mice, Knockout , Proteomics , Receptors, LDL/genetics
9.
J R Soc Interface ; 20(208): 20230472, 2023 11.
Article in English | MEDLINE | ID: mdl-37907092

ABSTRACT

Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.


Subject(s)
Aortic Aneurysm, Abdominal , Humans , Aorta , Risk Factors , Biomechanical Phenomena , Biophysics , Aorta, Abdominal , Stress, Mechanical , Models, Cardiovascular
10.
J Biomech ; 160: 111829, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37826955

ABSTRACT

Biaxial mechanical characterizations are the accepted approach to determine the mechanical response of many biological soft tissues. Although several computational and experimental studies have examined how experimental factors (e.g., clamped vs. suture mounting) affect the acquired tissue mechanical behavior, little is known about the role of specimen dimensions in data acquisition and the subsequent modeling. In this study, we combined our established mechanical characterization framework with an iterative size-reduction protocol to test the hypothesis that specimen dimensions affect the observed mechanical behavior of biaxial characterizations. Our findings indicated that there were non-significant differences in the peak equibiaxial stretches of tricuspid valve leaflets across four specimen dimensions ranging from 4.5×4.5mm to 9 × 9mm. Further analyses revealed that there were significant differences in the low-tensile modulus of the circumferential tissue direction. These differences resulted in significantly different constitutive model parameters for the Tong-Fung model between different specimen dimensions of the posterior and septal leaflets. Overall, our findings demonstrate that specimen dimensions play an important role in experimental characterizations, but not necessarily in constitutive modeling of soft tissue mechanical behavior during biaxial testing with the commercial CellScale BioTester.

12.
Acta Biomater ; 170: 68-85, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37699504

ABSTRACT

High failure rates present challenges for surgical and interventional therapies for peripheral artery disease of the femoropopliteal artery (FPA). The FPA's demanding biomechanical environment necessitates complex interactions with repair devices and materials. While a comprehensive understanding of the FPA's mechanical characteristics could improve medical treatments, the viscoelastic properties of these muscular arteries remain poorly understood, and the constitutive model describing their time-dependent behavior is absent. We introduce a new viscoelastic constitutive model for the human FPA grounded in its microstructural composition. The model is capable of detailing the contributions of each intramural component to the overall viscoelastic response. Our model was developed utilizing fractional viscoelasticity and tested using biaxial experimental data with hysteresis and relaxation collected from 10 healthy human subjects aged 57 to 65 and further optimized for high throughput and automation. The model accurately described the experimental data, capturing significant nonlinearity and hysteresis that were particularly pronounced circumferentially, and tracked the contribution of passive smooth muscle cells to viscoelasticity that was twice that of the collagen fibers. The high-throughput parameter estimation procedure we developed included a specialized objective function and modifications to enhance convergence for the common exponential-type fiber laws, facilitating computational implementation. Our new model delineates the time-dependent behavior of human FPAs, which will improve the fidelity of computational simulations investigating device-artery interactions and contribute to their greater physical accuracy. Moreover, it serves as a useful tool to investigate the contribution of arterial constituents to overall tissue viscoelasticity, thereby expanding our knowledge of arterial mechanophysiology. STATEMENT OF SIGNIFICANCE: The demanding biomechanical environment of the femoropopliteal artery (FPA) necessitates complex interactions with repair devices and materials, but the viscoelastic properties of these muscular arteries remain poorly understood with the constitutive model describing their time-dependent behavior being absent. We hereby introduce the first viscoelastic constitutive model for the human FPA grounded in its microstructures. This model was tested using biaxial mechanical data collected from 10 healthy human subjects between the ages of 57 to 65. It can detail the contributions of each intramural component to the overall viscoelastic response, showing that the contribution of passive smooth muscle cells to viscoelasticity is twice that of collagen fibers. The usefulness of this model as tool to better understand arterial mechanophysiology was demonstrated.


Subject(s)
Femoral Artery , Peripheral Arterial Disease , Humans , Middle Aged , Aged , Viscosity , Collagen , Elasticity , Stress, Mechanical , Models, Biological , Biomechanical Phenomena
13.
J R Soc Interface ; 20(206): 20230318, 2023 09.
Article in English | MEDLINE | ID: mdl-37700713

ABSTRACT

In situ tissue engineering offers an innovative solution for replacement valves and grafts in cardiovascular medicine. In this approach, a scaffold, which can be obtained by polymer electrospinning, is implanted into the human body and then infiltrated by cells, eventually replacing the scaffold with native tissue. In silico simulations of the whole process in patient-specific models, including implantation, growth and degradation, are very attractive to study the factors that might influence the end result. In our research, we focused on the mechanical behaviour of the polymeric scaffold and its short-term response. Following a recently proposed constitutive model for the anisotropic inelastic behaviour of fibrous polymeric materials, we present here its numerical implementation in a finite element framework. The numerical model is developed as user material for commercial finite element software. The verification of the implementation is performed for elementary deformations. Furthermore, a parallel-plate test is proposed as a large-scale representative example, and the model is validated by comparison with experiments.


Subject(s)
Polymers , Tissue Engineering , Humans , Anisotropy , Computer Simulation , Software
14.
Acta Biomater ; 169: 107-117, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37579911

ABSTRACT

The ascending thoracic aortic aneurysm (ATAA) is a permanent dilatation of the vessel with a high risk of adverse events, and shows heterogeneous properties. To investigate regional differences in the biomechanical properties of ATAAs, tissue samples were collected from 10 patients with tricuspid aortic valve phenotype and specimens from minor, anterior, major, and posterior regions were subjected to multi-ratio planar biaxial extension tests and second-harmonic generation (SHG) imaging. Using the data, parameters of a microstructure-motivated constitutive model were obtained considering fiber dispersion. SHG imaging showed disruptions in the organization of the layers. Structural and material parameters did not differ significantly between regions. The non-symmetric fiber dispersion model proposed by Holzapfel et al. [25] was used to fit the data. The mean angle of collagen fibers was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. The experimental data collected in this study contribute to the biomechanical data available in the literature on human ATAAs. Region-specific parameters for the constitutive models are fundamental to improve the current risk stratification strategies, which are mainly based on aortic size. Such investigations can facilitate the development of more advanced finite element models capable of capturing the regional heterogeneity of pathological tissues. STATEMENT OF SIGNIFICANCE: Tissue samples of human ascending thoracic aortic aneurysms (ATAA) were collected. Samples from four regions underwent multi-ratio planar biaxial extension tests and second-harmonic generation imaging. Region-specific parameters of a microstructure-motivated model considering fiber dispersion were obtained. Structural and material parameters did not differ significantly between regions, however, the mean fiber angle was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. This study provides a unique set of mechanical and structural data, supporting the microstructural influence on the tissue response. It may facilitate the development of better finite element models capable of capturing the regional tissue heterogeneity.


Subject(s)
Aneurysm, Ascending Aorta , Aortic Aneurysm, Thoracic , Humans , Aortic Aneurysm, Thoracic/pathology , Aorta , Extracellular Matrix/pathology , Collagen , Biomechanical Phenomena , Stress, Mechanical
15.
Tissue Eng Part B Rev ; 29(5): 574-588, 2023 10.
Article in English | MEDLINE | ID: mdl-37166394

ABSTRACT

Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.


Subject(s)
Blood Vessel Prosthesis , Muscle, Smooth, Vascular , Humans , Muscle, Smooth, Vascular/metabolism , Cell Differentiation , Myocytes, Smooth Muscle/metabolism , Phenotype , Cells, Cultured
16.
Acta Biomater ; 164: 269-281, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37003496

ABSTRACT

Degenerative mitral valve disease is the main cause of primary mitral regurgitation with two phenotypes: fibroelastic deficiency (FED) often with localized myxomatous degeneration and diffuse myxomatous degeneration or Barlow's disease. Myxomatous degeneration disrupts the microstructure of the mitral valve leaflets, particularly the collagen fibers, which affects the mechanical behavior of the leaflets. The present study uses biaxial mechanical tests and second harmonic generation microscopy to examine the mechanical behavior of Barlow and FED tissue. Three tissue samples were harvested from a FED patient and one sample is from a Barlow patient. Then we use an appropriate constitutive model by excluding the collagen fibers under compression. Finally, we built an FE model based on the echocardiography of patients diagnosed with FED and Barlow and the characterized material model and collagen fiber orientation. The Barlow sample and the FED sample from the most affected segment showed different mechanical behavior and collagen structure compared to the other two FED samples. The FE model showed very good agreement with echocardiography with 2.02±1.8 mm and 1.05±0.79 mm point-to-mesh distance errors for Barlow and FED patients, respectively. It has also been shown that the exclusion of collagen fibers under compression provides versatility for the material model; it behaves stiff in the belly region, preventing excessive bulging, while it behaves very softly in the commissures to facilitate folding. STATEMENT OF SIGNIFICANCE: This study quantifies for the first time the collagen microstructure and mechanical behavior of degenerative mitral valve (DMV) leaflets. These data will then be used for the first disease-specific finite element (FE) model of DMV. While current surgical repair of DMV is based on surgical experience, FE modeling has the potential to support decision-making and make outcomes predictable. We adopt a constitutive model to exclude collagen fiber under compressions, an important consideration when modeling the mitral valve, where the leaflets are folded to ensure complete closure. The results of this study provide essential data for understanding the relationship between collagen microstructure and degenerative mitral valve mechanics.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve Prolapse , Humans , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/surgery , Mitral Valve Prolapse/surgery , Finite Element Analysis , Collagen
17.
Front Bioeng Biotechnol ; 11: 1143304, 2023.
Article in English | MEDLINE | ID: mdl-37101751

ABSTRACT

Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to ex vivo porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.

18.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36975875

ABSTRACT

Hypoplastic Left Heart Syndrome (HLHS) is a congenital heart defect that requires a three-stage surgical palliation to create a single ventricle system in the right side of the heart. Of patients undergoing this cardiac palliation series, 25% will develop tricuspid regurgitation (TR), which is associated with an increased mortality risk. Valvular regurgitation in this population has been extensively studied to understand indicators and mechanisms of comorbidity. In this article, we review the current state of research on TR in HLHS, including identified valvular anomalies and geometric properties as the main reasons for the poor prognosis. After this review, we present some suggestions for future TR-related studies to answer the central question: What are the predictors of TR onset during the three palliation stages? These studies involve (i) the use of engineering-based metrics to evaluate valve leaflet strains and predict tissue material properties, (ii) perform multivariate analyses to identify TR predictors, and (iii) develop predictive models, particularly using longitudinally tracked patient cohorts to foretell patient-specific trajectories. Regarded together, these ongoing and future efforts will result in the development of innovative tools that can aid in surgical timing decisions, in prophylactic surgical valve repair, and in the refinement of current intervention techniques.

19.
Acta Biomater ; 161: 170-183, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36849029

ABSTRACT

The effects of thoracic endovascular repair (TEVAR) on the biomechanical properties of aortic tissue have not been adequately studied. Understanding these features is important for the management of endograft-triggered complications of a biomechanical nature. This study aims to examine how stent-graft implantation affects the elastomechanical behavior of the aorta. Non-pathological human thoracic aortas (n=10) were subjected to long-standing perfusion (8h) within a mock circulation loop under physiological conditions. To quantify compliance and its mismatch in the test periods without and with a stent, the aortic pressure and the proximal cyclic circumferential displacement were measured. After perfusion, biaxial tension tests (stress-stretch) were carried out to examine the stiffness profiles between non-stented and stented tissue, followed by a histological assessment. Experimental evidence shows: (i) a significant reduction in aortic distensibility after TEVAR, indicating aortic stiffening and compliance mismatch, (ii) a stiffer behavior of the stented samples compared to the non-stented samples with an earlier entry into the nonlinear part of the stress-stretch curve and (iii) strut-induced histological remodeling of the aortic wall. The biomechanical and histological comparison of the non-stented and stented aortas provides new insights into the interaction between the stent-graft and the aortic wall. The knowledge gained could refine the stent-graft design to minimize the stent-induced impacts on the aortic wall and the resulting complications. STATEMENT OF SIGNIFICANCE: Stent-related cardiovascular complications occur the moment the stent-graft expands on the human aortic wall. Clinicians base their diagnosis on the anatomical morphology of CT scans while neglecting the endograft-triggered biomechanical events that compromise aortic compliance and wall mechanotransduction. Experimental replication of endovascular repair in cadaver aortas within a mock circulation loop may have a catalytic effect on biomechanical and histological findings without an ethical barrier. Demonstrating interactions between the stent and the wall can help clinicians make a broader diagnosis such as ECG-triggered oversizing and stent-graft characteristics based on patient-specific anatomical location and age. In addition, the results can be used to optimize towards more aortophilic stent grafts.


Subject(s)
Aortic Aneurysm, Thoracic , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/pathology , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/methods , Mechanotransduction, Cellular , Endovascular Procedures/methods , Stents , Aortic Aneurysm, Thoracic/pathology , Prosthesis Design , Treatment Outcome
20.
Acta Biomater ; 160: 59-72, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36792047

ABSTRACT

Decellularized porcine aortas are proposed as scaffolds for revolutionary active aortic grafts. A change in the static and dynamic mechanical properties, associated with the microstructure of elastin and collagen fibers, corresponds to alteration in the cyclic expansion and perfusion, in addition to possible graft damage. Therefore, the present study thoroughly investigates the mechanical response of the decellularized scaffolds of human and porcine origin to static and dynamic mechanical loads. The responses of the native human and porcine aortas are also compared; this is unavailable in the literature. Because the aorta is subjected to pulsatile blood pressure, dynamical responses to cyclic loads and their associated viscoelastic properties are particularly relevant for advanced graft design. In parallel, this study examines the microstructure of the decellularized aorta. The resulting data are compared to the analogous data obtained for the native human and porcine tissues. The results indicate that by using an optimized decellularization protocol - based on sodium dodecyl sulfate (SDS) and DNase - that minimizes mechanical and structural changes of the tissue, layered scaffolds with static and dynamic properties very similar to natural human aortas are obtained. In particular, a decellularized porcine aorta is non-inferior to a decellularized human aorta. STATEMENT OF SIGNIFICANCE: About 55,000 patients undergo abdominal aortic aneurysm repair annually in the USA. The currently implanted grafts present a large mechanical mismatch with the native tissue. This increases the pulsatile nature of the blood flow with negative consequences to the organ perfusion. For this reason, biomimetic and mechanically compatible grafts for aortic repair are urgently needed and they can be obtained through tissue engineering. In this study, scaffolds from porcine and human aortas are obtained from an optimized decellularization protocol. They are accurately compared to the native tissue and present the ideal static and dynamic mechanical properties for developing innovative aortic grafts.


Subject(s)
Aorta , Tissue Engineering , Swine , Humans , Animals , Tissue Engineering/methods , Sodium Dodecyl Sulfate/chemistry , Tissue Scaffolds , Extracellular Matrix/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...